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Abstract—Advanced synthetic aperture radar (SAR) systems
achieve high spatial resolution by using wide range bandwidth
combined with long azimuth illumination time. In order to
deal with such sensor parameters, high quality SAR focusing
methods and often preprocessing of the raw data are necessary.
Omega-K processing is commonly accepted as the ideal solution
to the SAR focusing problem. Dechirp-on-receive can be used
to reduce the analog bandwidth of SAR raw data. In this
paper, a ready for implementation formulation of the Omega-K
algorithm for squinted spotlight SAR with dechirp-on-receive is
presented. The dechirp-on-receive procedure is analyzed showing
that a phase error is induced. A method is presented which
compensates this phase error by using a combination of a
frequency dependent time shift filter and a constant time shift
filter. Therewith, the theoretical achievable resolutions of the
focused image reconstructed from both dechirped and chirped
input data can be obtained.
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I. INTRODUCTION

Synthetic aperture radar (SAR) in spotlight mode generates
images of the illuminated ground with high azimuthal reso-
lution. In order to enhance the image resolution in range at
the same time, pulse bandwidth has to be increased. Often
a dechirp-on-receive procedure is then applied to reduce the
analog bandwidth of the raw data and the sampling frequency.
While the image reconstruction of SAR spotlight mode with a
high squint angle requires approximated calculation for many
SAR processors, the Omega-K algorithm attains almost the
ultimate resolution [1][2]. However, an approach to use the
Omega-K algorithm for highly squinted spotlight mode with
common dechirp-on-receive has not been described so far.

Dechirp-on-receive systems dechirp a return from a point
scatterer using a delayed, inverse replica of the transmitted
pulse. The dechirped return from a point scatterer is a sinu-
soidal signal with a frequency depending on the distance of the
point scatterer to the sensor. Range compression is therefore
achieved with a Fourier transform. The sinusoidal signal is
transformed into a peak located at the corresponding frequency
in the frequency domain. The bandwidth of the dechirped
signal is much smaller than the bandwidth of the chirped
signal. Thus, systems performing dechirp-on-receive usually
need lower requirements for their analog-digital-converter in
terms of sampling frequency. Dechirping on the one hand

reduces the hardware complexity, but on the other hand raises
extra effort in the signal processing.

In this paper the dechirp-on-receive procedure is investi-
gated to compare the range compressed output of chirped
and dechirped data. The phase error induced by dechirping is
derived in closed-form for correction. Furthermore, a ready for
implementation formulation of the Omega-K algorithm to deal
with both chirped and dechirped data from highly squinted
spotlight SAR imaging is presented.

In the following, the Omega-K algorithm for squinted
geometry is first described. Afterwards, the processing of
chirped and dechirped data are explained. Section V presents
the results showing that the theoretical achievable resolution
is preserved in both cases.

II. OMEGA-K ALGORITHM FOR SQUINTED SAR
The SAR geometry is shown in Fig. 1. While the platform

moves with a constant velocity v along the x-axis, the radar
illuminates the ground within x ∈ [−L/2, L/2]. All scatterers
can be thought to lie on a conceptual x-z plane, where the
z-axis is orthogonal to the x-axis [1].

For the derivation of the proposed generalized Omega-K
algorithm, which follows the original paper [1], the range
compressed data d(x, z = 0, t) recorded along the platform
trajectory at z = 0 is considered. The algorithm works with
the two-dimensional Fourier transform D(kx, z = 0, ω) of
the data:

d(x, z = 0, t) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

D(kx, z = 0, ω)

· ej(ωt+kxx)dωdkx, (1)

where ω is the angular frequency and kx the azimuthal
wavenumber. The origin of the time is placed when recording
starts, the measured field d(x, z = 0, t) is considered to be
produced by the sources exploding at a time t = −t0. From
the measured wave field the map of the sources at depth z can
be reconstructed by back-propagation

d(x, z, t = −t0) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

D(kx, z = 0, ω)

· ej(−ωt0+kxx)ejkzzdωdkx. (2)

In (2) the term ejkzz takes the spatial shift in z-direction
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Fig. 1: SAR geometry in squinted spotlight mode

k x

k z

0 k xck x0 k xc

2ωc

c

2ω
c

k zc

Stolt 
interpolation

Fig. 2: Change of variables kz =
√(

2ω
c

)2 − k2x
into account, where kz is the range wavenumber. In order
to solve the integral in equation (2), a change of variables
from ω to kz is needed. The Stolt interpolation, defined by
ω = c

2

√
k2x + k2z , gives

d(x, z,−t0) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

D
(
kx, z = 0,

c

2

√
k2x + k2z

)
· e−j

ct0
2

√
k2x+k

2
zej(kxx+kzz)

· c|kz|
2
√
k2x + k2z

dkzdkx. (3)

The spectrum D(kx, z = 0, ω) is band-limited and centered
at the carrier circular frequency ωc in range. In azimuth,
D(kx, z = 0, ω) is band-limited and centered at a center
wavenumber kxc. The squint angle evokes a Doppler shift
in azimuth, which becomes apparent at the nonzero center
wavenumber kxc, see Fig. 2. After Stolt interpolation, the
spectrum D

(
kx, z = 0, c2

√
k2x + k2z

)
is band-limited and

centered at kzc. To facilitate the integral evaluation, variable
substitutions kx = k′x+kxc, kz = k′z+kzc are done and yield

d(x, z,−t0) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

D
(
kx, z = 0,

c

2

√
k2x + k2z

)
· e−j

ct0
2

√
k2x+k

2
zej((k

′
x+kxc)x+(k′z+kzc)z)

· c|kz|
2
√
k2x + k2z

dk′zdk
′
x. (4)

Since only scatterers in the illuminated area around the spot
center (x0, z0) are expected in d(x, z,−t0), the origin of the
reconstructed x-z area should be centered at (x0, z0). This
spatial shift is achieved by variable substitutions x = x′ + x0
and z = z′ + z0 in equation (4):

d(x′, z′,−t0) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

D
(
kx, z = 0

c

2

√
k2x + k2z

)
· ej((k

′
x+kxc)(x

′+x0)+(k′z+kzc)(z
′+z0))

· e−j
ct0
2

√
k2x+k

2
z

c|kz|
2
√
k2x + k2z

dk′zdk
′
x (5)

=
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

D
(
kx, z = 0

c

2

√
k2x + k2z

)
· ej(x

′kxc+z
′kzc)e

−j
(
ct0
2

√
k2x+k

2
z−z0kz−x0kx

)

· c|kz|
2
√
k2x + k2z

ej(x
′k′x+z

′k′z)dk′zdk
′
x. (6)

In equation (6), the phase term ej(x
′kxc+z

′kzc) is inde-
pendent from the integration variables and describes a two-
dimensional (2D) frequency domain shift of kxc in azimuth
and kzc in range of D(kx, z = 0, c2

√
k2x + k2z). This shift

can be canceled out by using the Fourier transform of the
quadrature demodulated, range compressed and Doppler shift
corrected SAR data instead of using D(kx, z = 0, ω). The

term e
−j

(
ct0
2

√
k2x+k

2
z−z0kz−x0kx

)
performs azimuth focusing

in 2D frequency domain. The factor ct0
2 = R0 =

√
x20 + z20

is the distance to the scene center at (x0, z0). A point target
located at the scene center (x0, z0) will be focused and placed
at the center of the reconstructed image.

In summary, according to (6) the Omega-K algorithm
first performs a 2D Fourier transform on the quadrature
demodulated, range compressed and Doppler shift corrected
SAR data. The Stolt interpolation then performs the change
of variables from the angular frequency ω to kz . Subsequently,
the 2D spectrum is multiplied with the 2D filter

Hmf = e
−j

(
ct0
2

√
k2x+k

2
z−z0kz−x0kx

)
. (7)

The obliquity factor |kz|/
√
k2x + k2z is approximately 1 due

to the small relative bandwidth of SAR signals, k2x � k2z
[1]. Finally, the 2D inverse Fourier transform via the double
integral

∫ ∫
(·)ej(x′k′x+z

′k′z)dk′zdk
′
x yields the focused data

d(x′, z′,−t0), which is the desired SAR image of the illu-
minated area centered at (x0, z0).

III. PROCESSING CHIRPED DATA

In the case of chirped input raw data, range compression is
realized by a matched filter in frequency domain, see Fig. 3.
Let the transmitted signal s(t) be

s(t) = ejπγt
2

rect
{
t

T

}
, (8)

where γ is the positive chirp rate and T the pulse duration. If
the return from a point target is received delayed by a time
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Fig. 3: Block diagram of the generalized algorithm for chirped
and dechirped data

tp, the target’s echo can be expressed as

sr(t) = ejπγ(t−tp)
2

rect
{
t− tp
T

}
. (9)

The matched filter h(t) is given by

h(t) = s∗(−t) = e−jπγt
2

rect
{
t

T

}
. (10)

If we want to map a target at the scene center with a delay of
t0 to the center of the compressed signal, the results of range
compression with frequency domain matched filter is given as

sp(t) = |γ|T sinc{πγT (t− (tp − t0))}. (11)

The mathematical derivation of (11) is analog to the analysis
in [3]. After range compression, a Doppler shift correction and
if necessary a motion compensation are carried out. The data
is then fed into the Omega-K algorithm, see. Fig. 3.

IV. PROCESSING DECHIRPED DATA

In the case of dechirped input data, the dechirped signal
sd(t) can be described by

sd(t) = sr(t) · sref (t)

= ejπγ(t−tp)
2

rect
{
t− tp
T

}
e−jπγ(t−t0)

2

rect
{
t− t0
Text

}
= e−j2πγ(tp−t0)tejπγ(t

2
p−t

2
0)rect

{
t− tp
T

}
, (12)

f

t

T

B p

Transmit 
pulse

0
t 0 t p

Dechirp 
reference 
function

f

t
0

T ext

Near 
range 
return

Far
range 
return

Scene 
center 
return

Near range return

Scene center return

Far range return

Dechirp

Fig. 4: Dechirp-on-receive procedure for SAR raw data of
three targets at different range. Each return is described by its
frequency as a function of time.

where sref (t) = e−jπγ(t−t0)
2

rect
{
t−t0
Text

}
is the dechirp refer-

ence function, see Fig. 4. Range compression is achieved with
an inverse Fourier transform applied on sd(t) resulting

sfoc(f) = T sinc(πT (f − γ(tp − t0)))
· ejπγ(t

2
p−t

2
0)ej2π(f−γ(tp−t0))tp , (13)

where tp−t0 is the delay time difference between a point target
and the scene center. For the linear frequency modulation of
the range chirp signal, the substitution t = f/γ can be applied,
resulting in

sfoc(t) = T sinc(πTγ(t− (tp − t0)))
· ejπγ(t

2
p−t

2
0)ej2πγ(t−(tp−t0))tp . (14)

Comparing the focused range signal in (14) and equation (11),
it is evident that the phase term is an undesirable phase error
as a consequence of dechirping. This phase error is absent
in situations that use matched filter processing to accomplish
range compression. However, this phase error is systematic
and can be fully compensated by applying proper filters on
sfoc(f). The first part of the phase error in (13) can be
rearranged as

ejπγ(t
2
p−t

2
0) = ej2πγt0(tp−t0)ejπγ(tp−t0)

2

= ej2πt0fp · ej
π
γ f

2
p |fp=γ(tp−t0). (15)

Thus, to compensate the phase error, the signal sfoc(f) needs
to be multiplied with

Hcor(f) = e−j2πt0f · e−j
π
γ f

2

. (16)

This correction is done for every f = fp of every picture
element to correct the phase error induced by any target p.
Hcor(f) consists of a linear term Hlin(f) = e−j2πt0f and
a quadratic term HRV P (f) = e−j

π
γ f

2

. The quadratic term
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(a) Square region with 5 targets (×) (b) Chirped data (c) Dechirped data

Fig. 5: Simulation results. In (b)(c) top left point target is zoomed.

is known as range deskew and is described in [2] for non-
squinted SAR systems.

It has to be emphasized that only by applying both
Hlin(f) and HRV P (f) together, the phase error ejπγ(t

2
p−t

2
0)

can be fully compensated. Furthermore, by multiplication
with Hcor(f) for every f = fp, the second phase error
ej2π(f−γ(tp−t0))tp = ej2πγ(f−fp)tp in (13) is automatically
compensated to 1. The phase error compensation applied on
(13) results scor(f)

scor(f) = sfoc(f) ·Hcor(f)

= T sinc(πT (f − γ(tp − t0))). (17)

Finally, the substitution t = f/γ yields the desired time signal

scor(t) = T sinc(πγT (t− (tp − t0))). (18)

Comparison between (11) and the range compressed, phase
error compensated signal in (18) now shows that both results
are identical except for a constant factor, which has no
relevance since normalization is carried out in practice.

V. RESULTS

Fig. 5 presents simulation results with parameters shown in
Table I. Five targets are distributed in a square region of the
size (500m × 500m). With a reference range R0 = 16 km and
a squint angle θs = 30°, the scene center is located at (x0 =
8km, z0 = 13.856km). SAR raw data from the five targets
were simulated and submitted to the two processing chains
showed in the flow chart in Fig. 3. Comparing the results of
the image reconstruction from chirped and dechirped data, we
can see that in both cases the theoretical achievable resolutions
in range and azimuth are attained. In contrast to a recent paper
[4], this approach preserves the geometry of the 2D point target
response.

The focusing results remain good for squint angles up to at
least 62°.

TABLE I: Simulation parameters

Carrier frequency fc 10 GHz

Pulse bandwidth Bp 150 MHz

Pulse duration T 6 µs

Sample frequency 180 MHz

Platform velocity v 100 m/s

Synthetic aperture length 300 m

Pulse repetition frequency 400 Hz

VI. CONCLUSION

A generalized and ready for implementation Omega-K
algorithm for squinted SAR imaging is presented in this paper.
The advantage of the presented work is that through a post-
processing step after range compression in case of dechirped
data, the Omega-K algorithm kernel is the same for both
chirped and dechirped data. The SAR image reconstruction
is optimal for both chirped and dechirped raw data. However,
motion errors have not been considered in this study. Since
precise compensation of motion errors in most airborne SAR
systems is crucial for the focusing results [5], further work
will address this issue.
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