
INTEGRATION OF THE CIRCLE OF WILLIS INTO AVOLIO’S MODEL OF
THE ARTERIAL HAEMODYNAMICS

Michael Schwarz, Minh P. Nguyen, Uwe Kiencke
Institute of Industrial Information Technology

Universität Karlsruhe (TH)
Karlsruhe, Germany

email: schwarz@iiit.uni-karlsruhe.de

Claudia Heilmann, Rolf Klemm,
Christoph Benk, Friedhelm Beyersdorf
Department of Cardiovascular Surgery
University Medical Center Freiburg

Freiburg, Germany
Hans-Jörg Busch

Department of Cardiology and Angiology
University Medical Center Freiburg

Freiburg, Germany

ABSTRACT
Operations on the open heart require perfusion of the body
by a heart-lung machine. A sufficient perfusion of vital
organs is essential and has to be guaranteed also for pa-
tients with severe stenoses of the carotid arteries. Models
of the arterial system offer the opportunity to simulate ar-
terial flow and pressure in organs that cannot be accessed
by direct measurement. They can support surgical planning
and provide real-time information during the operation it-
self. In 1980 A. P. Avolio published a 1D model of the
arterial haemodynamics. It consists of a branching system
of 128 arterial segments which represent short elastic tubes.
Avolio’s model assumes a tree-like structure of the arterial
system. However this is not appropriate for the brain: The
anterior and posterior communicating arteries are missing
in this approach. The Circle of Willis becomes important
in case of an asymmetric perfusion of the brain. In this
paper we show how this redundant structure can be inte-
grated into Avolio’s model using a state-space representa-
tion. Simulation results demonstrate significant differences
between Avolio’s model and our model if a carotid artery
is stenosed.
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1. Introduction

Distributed models of the arterial haemodynamics have
been a subject of research since the 1960s (overviews are
given by Westerhof and Stergiopulos [18] and John [11]).
Models considering the whole arterial system are mostly
implemented as 1D models, which assume a monophase,
laminar flow. A popular approach are so-called transmis-
sion line models which are described in section 2. This
section shows how state-space equations can be obtained
from the original transmission line equation.

Avolio’s model [2] is an established transmission line
model which approximates the topology of the arterial sys-

tem with 128 segments. It is suitable to simulate pulsatile
blood flow and pressure in the systemic arteries and has
therefore been used as a basis for model based monitor-
ing of patients undergoing cardiac surgery by Naujokat and
Kiencke [15].

However with its tree-like structure Avolio’s model
fails to predict cerebral blood flow in case of an asym-
metric perfusion of the brain. The anterior and posterior
communicating arteries, which prevent insufficient perfu-
sion, are missing in Avolio’s topology. Asymmetric per-
fusion occurs when a carotid artery is stenosed or when
antegrade cerebral perfusion is applied during Deep Hy-
pothermic Circulatory Arrest. Therefore the integration of
the Circle of Willis into Avolio’s model, shown in section 3
is crucial to simulate cerebral haemodynamics.

The results for asymmetric perfusion of Avolio’s
model and the enhanced model are compared in section 4.

2. Transmission line models

2.1 Electrical analogon of haemodynamics

Arteries can be modelled as cylindric elastic tubes. Sim-
plifying assumptions, e. g. monophase, laminar flow, ro-
tational symmetry, negligence of the effect of gravitation
and consideration of blood as a homogeneous fluid lead
to a linearized one-dimensional form of the Navier-Stokes
equations [11, 12]:
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where p = pressure, q = flow, ρ = density of blood, η =
dynamic viscosity of blood, r = radius of the vessel, d =
arterial wall thickness and E = Young’s modulus.

Figure 1 shows a section of an electrical transmission
line. It represents equation (1) if pressure is replaced by
voltage and blood flow by electric current and if the fol-
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lowing coefficients are introduced:
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Figure 1. Electrical transmission line

The coherence between the input and output pressure
and flow is given by the following equation for a harmonic
stimulus and a steady-state system [9, 11]:

pin = pout cosh γΔz + qoutZ0 sinh γΔz

qin = poutZ
−1

0
sinhγΔz + qout cosh γΔz

whereΔz = length of transmission line,

Z0 =
√

(R′ + jωL′)/jωC′ characteristic impedance,

γ =
√

(R′ + jωL′) · jωC ′ propagation constant.

Arbitrary periodic stimuli can be simulated applying
Fourier series expansion.

2.2 Discretization

Another approach to solve the partial differential equa-
tion (1) is used in our model. Ordinary differential equa-
tions are obtained discretizing the flow direction z and
ODE solvers can be applied for simulation. Thus, tran-
sient behaviour can be simulated and a modular implemen-
tation in a simulation tool is possible. The approximation
is appropriate for short arterial segments. Figure 2 shows
valid discretizations of a transmission line of the lengthΔz
with R = R′Δz, L = L′Δz, C = C′Δz. We call a dis-
cretization valid, if the PDE (1) is the limit of the ODE for
Δz → dz.

The following steps can be carried out to proof valid-
ity:

1. Set up the (Laplace) chain matrixA for the quadripole
(cf. [8]):

[
pin

qin

]
= A ·

[
pout

qout

]
=
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A B
C D

]
·
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qout
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Figure 2. Discrete quadripoles

2. With the ABCD-parameters

D · pin − detA · pout = B · qin

qin −D · qout = C · pout

holds.

3. Calculate the inverse Laplace transform and the limit
Δz → dz.

There is also an illustrative explanation for the equiv-
alence of the four quadripoles for very short vessels: For
Δz → dz the pressure difference across the resistor and
the inductor as well as the flow through the capacitor con-
verge to zero. Therefore, the position of the capacitor is not
relevant.

Various situations occur in terms of boundary con-
ditions for the quadripoles when modelling complex net-
works of vessels. The different types of segments allow a
state-space representation for these situations.

Type I: Known input pressure and output flow.

dpout

dt
=

1

C
· (qin − qout)

dqin

dt
= −

R

L
· qin +

1

L
· (pin − pout)

This situation occurs when modelling branching ves-
sels: Let segments 2 and 3 be the successors of seg-
ment 1. Then p2

in
= p3

in
= p1

out
and q1

out
= q2

in
+ q3

in

holds. Thus pressure information is passed to the suc-
ceeding segments and flow information is propagated
backwards.

Type II: Known input and output flow.
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dt
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C
· (qin − qRL)
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L
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1

L
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where qRL = flow through R and L. Type II can be
used as an initial segment of the arterial system with a
flow source as a heart model connected left hand side
and a type I segment connected right hand side. This
situation concerning the boundary conditions also oc-
curs at the posterior communicating arteries (cf. sec-
tion 3).

Type III: Known input flow and output pressure.

dpin

dt
=

1

C
· (qin − qout)

dqout

dt
= −

R

L
· qout +

1

L
· (pin − pout)

This segment type is suitable for anastomosing struc-
tures, e. g. to model the venous system.

Type IV: Known input and output pressure.

dpC

dt
=

1

C
· (qin − qout)

dqin

dt
= −

R

L
· qin +

2

L
· (pin − pC)

dqout

dt
= −

R

L
· qout +

2

L
· (pC − pout)

where pC = pressure difference across the capacitorC.
This situation occurs at the anterior communicating
artery (cf. section 3).

2.3 Peripheral blood flow

Arterioles and capillaries provide the greatest portion of the
total vascular resistance. However, their inductance and
capacitance is negligible because of their small diameters.
Therefore only larger vessels are modelled as quadripoles
whereas smaller vessels are concentrated in variable termi-
nal resistors. If venous pressure is neglected, the terminal
resistors are grounded.

The terminal resistors determinate the total vascular
resistance (and thus arterial pressure) as well as the dis-
tribution of blood flow in the body. In many applications
physiological flow rates and pressure values are used to de-
termine an initial configuration of the terminal resistors (cf.
[11]). Flow rates for the brain are given e. g. by Fahrig
et al. [5]. Variable resistors allow to implement vasomo-
tor control mechanisms like the baroreceptor mechanism
or autoregulation of vital organs. Models of control mech-
anisms are discussed by Guyton et al. [7]. Naujokat and
Kiencke [15] introduce an online adaptation method of the
total vascular resistance for real-time simulation.

2.4 Avolio’s model

An established transmission line model of the human arte-
rial system was presented by Avolio [2]. The topology of
the model is shown in figure 3. The graph has got a tree-
structure and consists of 128 segments. The nomenclature
of the segments and anatomical data is given in [2].
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Figure 3. Topology of Avolio’s model

Segment 1 (ascending aorta) is the initial segment of
the model. The output flow of the left ventricle has to be
given to run a simulation. The initial segment is modelled
as a type II quadripole which requires a flow signal as a
boundary condition at its input and output. The input flow
is the cardiac output, the output flow information is prop-
agated backwards from segment 2 (aortic arch) which is
a type I quadripole. The initial segment generates a pres-
sure information at its input and the output. The input pres-
sure is identical to the systemic arterial pressure, the output
pressure is passed to segment 2 as a boundary condition.
All subsequent quadripoles are of type I. Pressure informa-
tion is passed to the successors while flow information is
returned to the predecessors as described in section 2.2.

A state space model of the order 257 is obtained with
one type III quadripole and 127 type I quadripoles, includ-
ing 61 terminal resistors. Thus, the model causes high com-
putational effort but it is suitable to simulate pulsatile pres-
sure and flow curves.

Simpler topologies may be sufficient depending on
the application. Such approaches are discussed e. g. by
Stergiopulos et al. [17] and Misgeld and Hexamer [13].
However, supervision of cerebral perfusion even requires
to increase complexity of the topology of the brain.

3. Integration of the Circle of Willis

The brain is sensitive to insufficient perfusion and may suf-
fer irreversible damage from ischemia. Stenoses or occlu-
sions of afferent arteries (carotid and vertebral arteries) can
be compensated by vasomotor control and a redundant ar-
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terial system in the brain. In Avolio’s model the vertebral
arteries are modelled as terminal segments. Thus a tree
structure is maintained. However, the vertebral arteries ac-
tually anastomose into the basilar artery which bifurcates
to the posterior cerebral arteries. Furthermore, the poste-
rior and middle cerebral arteries are connected by the pos-
terior communicating arteries while the anterior communi-
cating artery links the right and left anterior cerebral artery.
The entire topology is shown in figure 4.1 The physiologi-
cal data (table 1) is taken from Avolio [2] and Alastruey et
al. [1]. The radius of the postcommunicating arteries sug-
gested by Alastruey et al. [1] leads to an overestimation of
the flow in these arteries. Therefore a smaller radius has
been chosen for the communicating arteries (cf. [4, 5, 10]).
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Figure 4. Topology of the head including the Circle of
Willis

The Circle of Willis (CoW) is modelled with the
segments introduced in section 2.2. The adjacent vessels
(modelled with type I segments) which are part of Avolio’s
model determine the boundary conditions. An “input port”
of the CoW is connected to the output port of a type I seg-
ment which means that the input pressure is given by Avo-
lio’s model at this point. In figure 5, the segments 3 (left
subclavian), 6 (brachiocephalic), 32 and 36 (left and right
internal carotid) are connected to input ports. An “output
port” is connected to the input port of a type I segment, thus
the output flow is given by Avolio’s model. The segments
132, 133 (left and right posterior cerebral artery, postcom-
municating part), 47 and 52 (left and right anterior cere-
bral artery, postcommunicating part) are connected to out-
put ports. The CoW system must deliver an input flow for
each input port and an output pressure for each output port.
The boundary conditions determine the types of segments
that have to be chosen.

The state-space representation of the CoW system can
be derived from the state-space equations of the segments
and the flow balances and pressure conditions at the ver-
tices, where the quadripoles are connected. The approach
is illustrated for the vertebral arteries in the sequel.

The vertebral arteries are modelled by type I seg-
ments. The input pressure of the left vertebral artery is de-

1The branches of the internal and external carotid arteries have been
swapped to increase clarity of the diagram.

Table 1. Physiological data

Segment left right Δz r d E

cm cm cm 106 Pa

Data from Avolio [2]

Ascending aorta 1 4 1.45 0.163 0.4
Aortic arch 2 2 1.12 0.132 0.4
Aortic arch 5 3.9 1.07 0.127 0.4
Subclavian A 3 3.4 0.42 0.067 0.4
Subclavian B 8 14 6.8 0.4 0.066 0.4
Common carotid A 4 12 8.9 0.37 0.063 0.4
Common carotid B 10 22 8.9 0.37 0.063 0.4
Common carotid C 20 3.1 0.37 0.63 0.4
Brachiocephalic 6 3.4 0.62 0.086 0.4
Internal mammary 7 15 15 0.1 0.03 0.8
Vertebral 9 13 14.8 0.19 0.045 0.8
External carotid A 31 37 5.9 0.18 0.045 0.8
External carotid B 44 55 5.9 0.13 0.039 0.8
External carotid C 60 68 5.9 0.08 0.026 1.6
Internal carotid 32 36 11.8 0.15 0.042 0.8
Superior thyroid l 33 35 4 0.07 0.02 0.8
Lingual 43 56 3 0.1 0.03 0.8
Facial 45 54 4 0.1 0.03 1.6
Middle cerebral 46 53 3 0.06 0.02 1.6
Anterior cerebral B 47 52 5.9 0.08 0.026 1.6
Ophthalmic 48 51 3 0.07 0.02 1.6
Superficial temporal 73 77 4 0.06 0.02 1.6
Maxiliary 74 76 5 0.07 0.02 1.6

Data from Alastruey et al. [1]

Basilar 129 2.9 0.162 0.04 1.6
Posterior cerebral A 130 131 0.5 0.107 0.027 1.6
Posterior cerebral B 132 133 8.6 0.105 0.026 1.6
Posterior comm. 134 135 1.5 0.05∗ 0.018 1.6
Anterior cerebral A 136 137 1.2 0.117 0.029 1.6
Anterior comm. 138 0.3 0.05∗ 0.019 1.6
∗ adapted to Fahrig et al. [5]

termined by the output pressure of the left subclavian artery
p9

in
= p3

out and the input pressure of the right vertebral
artery is equal to the output pressure of the brachiocephalic
artery p13

in
= p6

out
. The two vertebral arteries anastomose

to the basilar artery, therefore p129
in

= p9
out = p13

out holds.
Thus, the following equations result:

Left vertebral artery:

dp129

in

dt
=

1

C9
· (q9

in − q9

out) (2)

dq9

in

dt
= −

R9

L9
· q9

in +
1

L9
· (p3

out − p129

in ) (3)

Right vertebral artery:

dp129

in

dt
=

1

C13
· (q13

in − q13

out) (4)

dq13

in

dt
= −

R13

L13
· q13

in +
1

L13
· (p6

out − p129

in ) (5)

We calculate C9 · (2)+ C13 · (4)

(C9 + C13)
dp129

in

dt
= q9

in − q9

out + q13

in − q13

out
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Figure 5. Model of the Circle of Willis with interface to
Avolio’s model

and insert the flow balance q129

in
= q9

out
+ q13

out
:

dp129
in

dt
=

1

C9 + C13
· (q9

in + q13

in − q129

in ) (6)

Equations (2), (4) and (6) are state-space equations of
the system. Twenty equations are required to describe the
complete CoW system.

4. Results and Discussion

A simulation of the system has been carried out with a
heart rate of 60 min−1 and a cardiac output of 85 ml/s.
The course of the aortic flow is taken from [16]. The ob-
tained average flows in the cerebral and communicating ar-
teries (see table 2, left) as well as the vertebral and internal
carotid arteries approximately match with the simulation
results of Fahrig’s cerebrovascular flow phantom [5]. The
parametrization of the terminal resistors (cf. section 2.3) is
a compromise between a realistic total cerebral blood flow
entering through the internal carotid and vertebral arteries
and a realistic flow leaving the anterior, middle and poste-
rior cerebral artery. The discrepancy arises because smaller
vessels like the superior cerebellar artery are neglected by
the model [5].

An area stenosis of 90% in the right internal carotid
artery (segment 36) has been simulated varying the charac-
teristics of the quadripole to contrast the results of Avolio’s

model and the new model including the Circle of Willis.
Figure 6(a) shows that Avolio’s model predicts a signif-
icantly reduced flow in the right anterior cerebral artery.
However, the new model (figure 6(b)) shows that the collat-
eral blood flow through the anterior and posterior commu-
nicating (figure 8) arteries compensates the reduced flow
through the right internal carotid artery, while flow through
the left anterior cerebral artery is slightly diminished. Sim-
ilar results are obtained for the middle cerebral artery (fig-
ure 7).2

The average flows in the cerebral and communicating
arteries are given in table 2, right. Obviously, the compen-
sation of the reduced perfusion of the right brain is mainly
due to the collateral flow through the anterior communicat-
ing artery, which has also been observed by Alastruey [1].

Table 2. Simulated average flow in ml/s

physiological ICA stenosis
Segment left right left right

Anterior cerebral 1.37 1.37 1.36 1.28
Mean cerebral 2.50 2.50 2.51 2.32
Posterior cerebral 0.93 0.93 0.95 0.95
Anterior communicating -0.01 2.67
Posterior communicating 0.31 0.31 0.50 0.42

5. Conclusion and Outlook

Avolio’s model of the arterial haemodynamics has been ex-
tended by the Circle of Willis in this article. Electrical
quadripoles are used to map the transmission line equations
to a linear state-space model. The complete Circle ofWillis
is modelled as a system of coupled quadripoles with a de-
fined interface to Avolio’s model. The resulting model can
be simulated using ODE solvers.

The model is designed to simulate perfusion of vital
organs. Simulation results are consistent with the results
of other authors. Significant differences between Avolio’s
model and the extended model occur in case of an asym-
metric perfusion of the brain. The extended model is ca-
pable to predict more realistic flow rates in the brain for
patients with stenoses of the carotid arteries.

Up to now we assume a complete Circle of Willis in
our model. Anatomical variations like absent arteries [1, 6]
or variations in the diameter [3] may be diagnosed in surgi-
cal planning and considered in future versions of the model.
Moreover, vasomotor control [6, 14] is not yet considered,
however the model structure allows to implement changes
in peripheral resistance. Autoregulationmight contribute to
compensate the effects of asymmetric perfusion. In a mod-
ified version the model will be capable to predict cerebral
flow during antegrade cerebral perfusion.

2The pulsatile dynamics of the anterior and middle cerebral artery are
almost identical because they branch from the same vertex. However their
amplitudes differ.
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Figure 6. Flow in anterior cerebral arteries (– left, - - right)
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Figure 7. Flow in middle cerebral arteries (– left, - - right)
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Figure 8. Model with Circle of Willis
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