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Abstract. In order to reconstruct 3-D Euclidean shape by the Tomasi-
Kanade factorization, one needs to specify an affine camera model such as
orthographic, weak perspective, and paraperspective. We present a new
method that does not require any such specific models. We show that a
minimal requirement for an affine camera to mimic perspective projection
leads to a unique camera model, called symmetric affine camera, which
has two free functions. We determine their values from input images by
linear computation and demonstrate by experiments that an appropriate
camera model is automatically selected.

1 Introduction

One of the best known techniques for 3-D reconstruction from feature point
tracking through a video stream is the Tomasi-Kanade factorization [10], which
computes the 3-D shape of the scene by approximating the camera imaging by an
affine transformation. The computation consists of linear calculus alone without
involving iterations [5]. The solution is sufficiently accurate for many practi-
cal purposes and is used as an initial solution for more sophisticated iterative
reconstruction based on perspective projection [2].

If the camera model is not specified, other than being affine, the 3-D shape
is computed only up to an affine transformation, known as affine reconstruction
[9]. For computing the correct shape (Euclid reconstruction), we need to specify
the camera model. For this, orthographic, weak perspective, and paraperspective
projections have been used [7]. However, the reconstruction accuracy does not
necessarily follow in that order [1]. To find the best camera models in a particular
circumstance, one needs to choose the best one a posteriori . Is there any method
for automatically selecting an appropriate camera model?

Quan [8] showed that a generic affine camera has three intrinsic parameters
and that they can be determined by self-calibration if they are fixed. The intrinsic
parameters cannot be determined if they vary freely. The situation is similar to
the dual absolute quadric constraint [2] for upgrading projective reconstruction
to Euclidean, which cannot be imposed unless something is known about the
camera (e.g., zero skew).
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In this paper, we show that minimal requirements for the general affine cam-
era to mimic perspective projection leads to a unique camera model, which we
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call a symmetric affine camera, having two free functions of motion parame-
ters; specific choices of their function forms result in the orthographic, weak
perspective, and paraperspective models.

However, we need not specify such function forms. We can determine their
values directly from input images. All the computation is linear just as in the
case of the traditional factorization method, and an appropriate model is auto-
matically selected.

Sec. 2 summarizes fundamentals of affine cameras, and Sec. 3 summarizes
the metric constraint. In Sec. 4, we derive our symmetric affine camera model.
Sec. 5 describes the procedure for 3-D reconstruction using our model. Sec. 6
shows experiments, and Sec. 7 concludes this paper.

2 Affine Cameras

Consider a camera-based XY Z coordinate system with the origin O at the pro-
jection center and the Z axis along the optical axis. Perspective projection maps
a point (X, Y, Z) in the scene onto a point with image coordinates (x, y) such
that

x = f
X

Z
, y = f

Y

Z
, (1)

where f is a constant called the focal length (Fig. 1(a)).
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(c) Weak perspective projection. (d) Paraperspective projection.

Fig. 1. Camera models.

Consider a world coordinate system fixed to the scene, and let t and {i, j,
k} be its origin and the orthonormal basis vectors described with respect to the
camera coordinate system. We call t the translation, the matrix R =

(
i j k

)
having {i, j, k} as columns the rotation, and {t, R} the motion parameters.

If (i) the object of our interest is localized around the world coordinate origin
t, and (ii) the size of the object is small as compared with ‖t‖, the imaging can
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be approximated by an affine camera [9] in the form

(
x
y

)
=

(
Π11 Π12 Π13

Π21 Π22 Π23

) 


X
Y
Z


 +

(
π1

π2

)
. (2)

We call the 2× 3 matrix Π = (Πij) and the 2-D vector π = (πi) the projection
matrix and the projection vector , respectively; their elements are “functions” of
the motion parameters {t, R}. The intrinsic parameters are implicitly defined
via the functional forms of {Π, π} on {t, R}, e.g., as coefficients. Typical affine
cameras are

Orthographic projection (Fig. 1(b))

Π =
(

1 0 0
0 1 0

)
, π =

(
0
0

)
. (3)

Weak perspective projection (Fig. 1(c))

Π =
(

f/tz 0 0
0 f/tz 0

)
, π =

(
0
0

)
. (4)

Paraperspective projection (Fig. 1(d))

Π =
(

f/tz 0 −ftx/t2z
0 f/tz −ftx/t2z

)
, π =

(
ftx/tz
fty/tz

)
. (5)

Suppose we track N feature points over M frames. Identifying the frame
number κ with “time”, let tκ and {iκ, jκ, kκ} be the origin and the basis
vectors of the world coordinate system at time κ (Fig. 2(a)). The 3-D position
of the αth point at time κ has the form

rκα = tκ + aαiκ + bαjκ + cαkκ. (6)

Under the affine camera of eq. (2), its image coordinates (xκα, yκα) are given by
(

xκα

yκα

)
= t̃κ + aαĩκ + bαj̃κ + cαk̃κ, (7)
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Fig. 2. (a) Camera-based description of the world coordinate system. (b) Affine space
constraint.
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where t̃κ, ĩκ, j̃κ, and k̃κ are 2-D vectors defined by

t̃κ = Πκtκ + πκ, ĩκ = Πκiκ, j̃κ = Πκjκ, k̃κ = Πκkκ. (8)

Here, Πκ and πκ are the projection matrix and the projective vector, respec-
tively, at time κ. The motion history of the αth point is represented by a vector

pα =
(
x1α y1α x2α y2α . . . xMα yMα

)>
, (9)

which we simply call the trajectory of that point. Using eq. (7), we can write

pα = m0 + aαm1 + bαm2 + cαm3, (10)

where m0, m1, m2, and m3 are the following 2M -dimensional vectors:

m0 =




t̃1
t̃2
...

t̃M


 , m1 =




ĩ1
ĩ2
...

ĩM


 , m2 =




j̃1

j̃2
...

j̃M


 , m3 =




k̃1

k̃2

...
k̃M


 . (11)

Thus, all the trajectories {pα} are constrained to be in the 3-D affine space A
in R2M passing through m0 and spanned by m1, m2, and m3 (Fig. 2(b)). This
fact is known as the affine space constraint .

3 Metric Constraint

Since the world coordinate system can be placed arbitrarily, we let its origin
coincide with the centroid of the N feature points. This implies

∑N
α=1 aα =∑N

α=1 bα =
∑N

α=1 cα = 0, so we have from eq. (10)

1
N

N∑
α=1

pα = m0, (12)

i.e., m0 is the centroid of the trajectories {pα} in R2M . It follows that the
deviation p′α of pα from the centroid m0 is written as1

p′α = pα −m0 = aαm1 + bαm2 + cαm3, (13)

which means that {p′α} are constrained to be in the 3-D subspace L in R2M .
Hence, the matrix

C =
N∑

α=1

p′αp′α
> (14)

1 In the traditional formulation [7, 10], vectors {p′α} are combined into the measure-
ment matrix , W =

(
p′1 . . . p′N

)
, and the object coordinates {(aα, bα, cα)} are com-

bined into the shape matrix , S =

(
a1 . . . aN
b1 . . . bN
c1 . . . cN

)
. Then, eq. (13) is written as W =

MS, where M , the motion matrix , is defined by the first of eqs. (16).
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has rank 3, having three nonzero eigenvalues. The corresponding unit eigenvec-
tors {u1, u2, u3} constitute an orthonormal basis of the subspace L, and m1,
m2, and m3 are expressed as a linear combination of them in the form

mi =
3∑

j=1

Ajiuj . (15)

Let M and U be the 2M × 3 matrices consisting of {m1, m2, m3} and {u1,
u2, u3} as columns:

M =
(
m1 m2 m3

)
, U =

(
u1 u2 u3

)
. (16)

From eq. (15), M and U are related by the matrix A = (Aij) in the form2:

M = UA. (17)

The rectifying matrix A = (Aij) is determined so that m1, m2 and m3 in
eqs. (11) are projections of the orthonormal basis vectors {iκ, jκ, kκ} in the
form of eqs. (8). From eqs. (8), we obtain

(
ĩκ j̃κ k̃κ

)
= Πκ

(
iκ jκ kκ

)
= ΠκRκ, (18)

where Rκ is the rotation at time κ. If we let m†
κ(a) be the (2(κ−1)+a)th column

of the transpose M> of the matrix M in eqs. (16), κ = 1, ..., M , a = 1, 2. The
transpose of both sides of eq. (18) is

R>
κ Π>

κ =
(

m†
κ(1) m†

κ(2)

)
. (19)

Eq. (17) implies M> = A>U>, so if we let u†κ(a) be the (2(κ−1)+a)th column

of the transpose U> of the matrix U in eqs. (16), we obtain

m†
κ(a) = A>u†κ(a). (20)

Substituting this, we can rewrite eq. (19) as

R>
κ Π>

κ = A>
(

u†κ(1) u†κ(2)

)
. (21)

Let U †
κ the 3× 2 matrix having u†κ(1) and u†κ(2) as columns:

U †
κ =

(
u†κ(1) u†κ(2)

)
. (22)

2 In the traditional formulation [7, 10], the measurement matrix W is decomposed by
the singular value decomposition into W = U�V >, and the motion and the shape
matrices M and S are set to M = UA an S = A−1�V > via a nonsingular matrix
A.
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From eq. (21), we have U †>
κ AA>U †

κ = ΠκRκR>
κ Π>

κ . Since Rκ is a rotation
matrix, we have the generic metric constraint

U †>
κ TU †

κ = ΠκΠ>
κ , (23)

where we define the metric matrix T as follows:

T = AA>. (24)

Eq. (23) is the generic metric constraint given by Quan [8]. If we take out the
elements on both sides, we have the following three expressions:

(u†κ(1), Tu†κ(1)) =
3∑

i=1

Π2
1iκ, (u†κ(2), Tu†κ(2)) =

3∑

i=1

Π2
2iκ,

(u†κ(1), Tu†κ(2)) =
3∑

i=1

Π1iκΠ2iκ. (25)

These correspond to the dual absolute quadric constraint [2] on the homography
that rectifies the basis of projective reconstruction to Euclidean.

We focus on the fact that at most two time varying unknowns of the camera
model can be eliminated from eqs. (25). We show that (i) we can restrict the
camera model without much impairing its descriptive capability so that it has
two free functions and (ii) we can redefine them in such a way that the resulting
2M unknowns are linearly estimated.

4 Symmetric Affine Cameras

We now seek a concrete form of the affine camera by imposing minimal require-
ments that eq. (2) mimic perspective projection.

Requirement 1. The frontal parallel plane passing through the world coordi-
nate origin is projected as if by perspective projection.

This corresponds to our assumption that the object of our interest is small and
localized around the world coordinate origin (tx, ty, tz). A point on the plane Z
= tz is written as (X,Y, tz), so Requirement 1 implies

(
fX/tz
fY/tz

)
=

(
Π11 Π12

Π21 Π22

)(
X
Y

)
+ tz

(
Π13

Π23

)
+

(
π1

π2

)
. (26)

Since this should hold for arbitrary X and Y , we obtain

Π11 = Π22 =
f

tz
, Π12 = Π21 = 0, tzΠ13 + π1 = 0, tzΠ23 + π2 = 0, (27)

which reduces eq. (2) to
(

x
y

)
=

f

tz

(
X
Y

)
− (tz − Z)

(
Π13

Π23

)
, (28)

where f , Π13 and Π23 are arbitrary functions of {t, R}. In order to obtain a
more specific form, we impose the following requirements:
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Requirement 2. The camera imaging is symmetric around the Z-axis.

Requirement 3. The camera imaging does not depend on R.

Requirement 2 states that if the scene is rotated around the optical axis by
an angle θ, the resulting image should also rotate around the image origin by the
same angle θ, a very natural requirement. Requirement 3 is also natural, since
the orientation of the world coordinate system can be defined arbitrarily, and
such indeterminate parameterization should not affect the actual observation.

Let R(θ) be the 2-D rotation matrix by angle θ:

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
. (29)

Requirement 2 is written as

R(θ)
(

x
y

)
=

f

tz
R(θ)

(
X
Y

)
− (tz − Z)

(
Π ′

13

Π ′
23

)
, (30)

where Π ′
13 and Π ′

23 are the values of the functions Π13 and Π23, respectively,
obtained by replacing tx and ty in their arguments by tx cos θ − ty sin θ and
tx sin θ + ty cos θ, respectively; by Requirement 3, the arguments of Π13 and Π23

do not contain R. Multiplying both sides of eq. (28) by R(θ), we obtain

R(θ)
(

x
y

)
=

f

tz
R(θ)

(
X
Y

)
− (tz − Z)R(θ)

(
Π13

Π23

)
. (31)

Comparing eqs. (30) and (31), we conclude that the equality
(

Π ′
13

Π ′
23

)
= R(θ)

(
Π13

Π23

)
(32)

should hold identically for an arbitrary θ. According to the theory of invariants
[3], this implies (

Π13

Π23

)
= c

(
tx
ty

)
, (33)

where c is an arbitrary function of t2x + t2y and tz. Thus, if we define

ζ =
tz
f

, β = −ctz
f

, (34)

eq. (28) is written as
(

x
y

)
=

1
ζ

((
X
Y

)
+ β(tz − Z)

(
tx
ty

))
. (35)

The corresponding projection matrix Π and the projection vector π are

Π =
(

1/ζ 0 −βtx/ζ
0 1/ζ −βty/ζ

)
, π =

(
βtxtz/ζ
βtytz/ζ

)
, (36)

where ζ and β are arbitrary functions of t2x + t2y and tz. We observe:
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– Eq. (35) reduces to the paraperspective projection (eqs. (5)) if we choose

ζ =
tz
f

, β =
1
tz

. (37)

– Eq. (35) reduces to the weak perspective projection (eqs. (4)) if we choose

ζ =
tz
f

, β = 0. (38)

– Eq. (35) reduces to the orthographic projection (eqs. (3)) if we choose

ζ = 1, β = 0. (39)

Thus, eq. (35) includes the traditional affine camera models as special instances
and is the only possible form that satisfies Requirements 1, 2, and 3.

However, we need not define the functions ζ and β in any particular form;
we can regard them as time varying unknowns and determine their values by
self-calibration. This is made possible by the fact that at most two time varying
unknowns can be eliminated from the metric constraint of eqs. (25).

5 Procedure for 3-D Reconstruction

3-D Euclidean reconstruction using eq. (35) goes just as for the traditional cam-
era models (see [6] for the details):

1. We fit a 3-D affine space A to the trajectories {pα} by least squares. Namely,
we compute the centroid m0 by eq. (12) and compute the unit eigenvectors
{u1, u2, u3} of the matrix C in eq. (14) for the largest three eigenvalues3.

2. We eliminate time varying unknowns from the the metric constraint of
eqs. (25) and solve for the metric matrix T by least squares. To be spe-
cific, substituting eqs. (36) into eqs. (25), we have

(u†κ(1),Tu†κ(1)) =
1
ζ2
κ

+ β2
κt̃2xκ, (u†κ(2),Tu†κ(2)) =

1
ζ2
κ

+ β2
κt̃2yκ

(u†κ(1), Tu†κ(2)) = β2
κt̃xκt̃yκ, (40)

where t̃xκ and t̃yκ are, respectively, the (2(κ−1)+1)th and the (2(κ−1)+2)th
components of the centroid m0. Eliminating ζκ and βκ, we obtain

Aκ(u†κ(1),Tu†κ(1))− Cκ(u†κ(1), Tu†κ(2))−Aκ(u†κ(2), Tu†κ(2)) = 0, (41)

where Aκ = t̃xκt̃yκ and Cκ = t̃2xκ − t̃2yκ. This is a linear constraint on T , so
we can determine T by solving the M equations for κ = 1, ..., M by least
squares. Once we have determined T , we can determine ζκ and βκ from
eqs. (40) by least squares.

3 This corresponds to the singular value decomposition W = U�V > of the measure-
ment matrix W in the traditional formulation [7, 10].
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3. We decompose the metric matrix T into the rectifying matrix A in the form
of eq. (24), and compute the vectors m1, m2, and m3 from eq. (15).

4. We compute the translation tκ and the rotation Rκ at each time. The trans-
lation components txκ and tyκ are given by the first of eqs. (8) in the form
of txκ = ζκt̃xκ and tyκ = ζκt̃yκ. The three rows rκ(1), rκ(2), and rκ(3) of the
rotation Rκ are given by solving the linear equations

rκ(1) −βκtxκrκ(3) = ζκm†
κ(1),

rκ(2) −βκtyκrκ(3) = ζκm†
κ(2),

βκtxκrκ(1) +βκtyκrκ(2) +rκ(3) = ζ2
κm†

κ(1) ×m†
κ(2).

(42)

The resulting matrix
(
rκ(1) rκ(2) rκ(3)

)
may not be strictly orthogonal, so

we compute its singular value decomposition V κΛκU>
κ and let Rκ = UκV >

κ

[4].
5. We recompute the vectors m1, m2, and m3 in the form of eqs. (11) using

the computed rotations Rκ =
(
iκ jκ kκ

)
.

6. We compute the object coordinates (aα, bβ , cβ) of each point by least-squares
expansion of p′α in the form of eq. (13). The solution is given by M−pα,
using the pseudoinverse M− of M .

However, the following indeterminacy remains:

1. Another solution is obtained by multiplying all {tκ} and {(aα, bα, cα)} by a
common constant.

2. Another solution is obtained by multiplying the all {Rκ} by a common
rotation. The object coordinates {(aα, bα, cα)} are rotated accordingly.

3. Each solution has its mirror image solution. The mirror image rotation
R′

κ is obtained by the rotation Rκ followed by a rotation around axis
(βκtxκ, βκtyκ, 1) by angle 2π. At the same time, the object coordinates
{(aα, bα, cα)} change their signs.

4. The absolute depth tz of the world coordinate origin is indeterminate.

Item 1 is the fundamental ambiguity of 3-D reconstruction from images,
meaning that a large motion of a large object in the distance is indistinguishable
from a small motion of a small object nearby. Item 2 reflects the fact that the
orientation of the world coordinate system can be arbitrarily chosen. Item 3 is
due to eq. (24), which can be written as T = (±AQ)(±AQ)> for an arbitrary
rotation Q. This ambiguity is inherent of all affine cameras [8, 9].

Item 4 is due to the fact that eq. (35) involves only the relative depth of
individual point from the world coordinate origin tκ. The absolute depth tz
is determined only if ζ and β are given as specific functions of tz, as in the
case of the traditional camera models. Here, however, we do not specify their
functional forms, directly determining their values by self-calibration and leaving
tz unspecified.
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6 Experiments

Fig. 3 shows four simulated image sequences of 600 × 600 pixels perspectively
projected with focal length f = 600 pixels. Each consists of 11 frames; six deci-
mated frames are shown here. We added Gaussian random noise of mean 0 and
standard deviation 1 pixel independently to the x and y coordinates of the fea-
ture points and reconstructed their 3-D shape (the frames in Fig. 3(a), (b) are
merely for visual ease).

From the resulting two mirror image shapes, we choose the correct one by
comparing the depths of two points that are known be close to and away from the
camera. Since the absolute depth and scale are indeterminate, we translate the
true and the reconstructed shapes so that their centroids are at the coordinate
origin and scaled their sizes so that the root-mean-square distance of the feature
points from the origin is 1. Then, we rotate the reconstructed shape so that
root-mean-square distances between the corresponding points of the two shapes
is minimized. We adopt the resulting residual as the measure of reconstruction
accuracy.

We compare three camera models: the weak perspective, the paraperspective,
and our symmetric affine camera models. The orthographic model is omitted,
since evidently good results cannot be obtained when the object moves in the
depth direction. For the weak perspective and paraperspective models, we need
to specify the focal length f (see eqs. (4) and (5)). If the size of the reconstructed
shape is normalized as described earlier, the choice of f is irrelevant for the weak
perspective model, because it only affects the object size as a whole. However,
the paraperspective model depends on the value of f we use.

(a)

(b)

(c)

(d)

Fig. 3. Simulated image sequences (six decimated frames for each).
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Fig. 4. 3-D reconstruction accuracy for the image sequences of Fig. 3(a)∼(d). The
horizontal axis is scaled in proportion to 1/f . Three models are compared: The dashed
line: weak perspective (dashed lines), paraperspective (thin solid lines), and our generic
model (thick solid lines).

Fig. 4 plots the reconstruction accuracy vs. the input focal length f ; the
horizontal axis is scaled in proportion to 1/f . The dashed line is for weak per-
spective, the thin solid line is for paraperspective, and the thick solid line is for
our model. We observe that the paraperspective model does not necessarily give
the highest accuracy when f coincides with the focal length (600 pixels) of the
perspective images. The error is indeed minimum around f = 600 for Fig. 4(a),
(d), but the error decreases as f increases for Fig. 4(b) and as f decreases for
Fig. 4(c).

We conclude that our model achieves the accuracy comparable to paraper-
spective projection given an appropriate value of f , which is unknown in advance.
This means that our model automatically chooses appropriate parameter values
without any knowledge about f .

We conducted many other experiments (not shown here) and observed similar
results. We have found that degeneracy can occur in special circumstances; the
matrix A becomes rank deficient so that the resulting vectors {mi} are linearly
dependent (see eq. (15)). As a result, the reconstructed shape is “flat” (see
eq. (13)). This occurs when the smallest eigenvalue of T computed by least
squares is negative, while eq. (24) requires T to be positive semidefinite. In the
computation, we replace the negative eigenvalue by zero, resulting in degeneracy.

This type of degeneracy occurs for the traditional camera models, too. In
principle, we could avoid it by parameterizing T so that it is guaranteed to be
positive definite [8]. However, this would require nonlinear optimization, and the
merit of the factorization approach (i.e., linear computation only) would be lost.
Moreover, if we look at the images that cause degeneracy, they really look as if
a planar object is moving. Since the information is insufficient in the first place,
any methods may not be able to solve such degeneracy.

7 Conclusions

We showed that minimal requirements for an affine camera to mimic perspective
projection leads to a unique camera model, which we call “symmetric affine
camera”, having two free functions, whose specific choices would result in the
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traditional camera models. We regarded them as time varying parameters and
determined their values by self-calibration, using linear computation alone, so
that an appropriate model is automatically selected. We have demonstrated by
simulation that the reconstruction accuracy is comparable to the paraperspective
model given an appropriate focal length estimate.
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