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Abstract: In this work we show analytically and in real world experiments
that an often used method for estimating subpixel edge positions in digital cam-
era images generates a biased estimate of the edge position. The influence of
this bias is as great as the uncertainty of edge positions due to camera noise.
Many algorithms in computer vision rely on edge positions as input data. Some
consider an uncertainty of the position due to camera noise. These algorithms
can benefit from our calculation by adding our bias to their uncertainty.
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1 Introduction

The low level task of precise edge detection is a basis for many applications in
image processing and computer vision.

In this work we show analytically and in real world experiments that an often
used method for estimating subpixel edge positions in digital images generates
a biased estimate of the edge position. We show analytically that common algo-
rithms similar to the well known Canny [1] edge detector, which use parabolic
functions for subpixel refinement of edge positions exhibit a bias of the estimage.

So far extensive work has been done on edge localisation, as it is a crucial task
in computer vision and image processing. Nevertheless we think that we can make
some additions to this toppic. The effect of the bias revealed by our calculation
is in the same range as the uncertainty of edge positions introduced by camera
noise. Our theoretical results are verified in easily reproducible experiments with
real world data.

Some past approaches to edge localisation [2,3,4,5] have shown good or even
optimal approaches for continuous signals. Nevertheless, they are not easily
portable to the case of digitised images because it is the interpolation process
that introduces the bias to the edges positions. Other approaches [1,6,7] use
digitised images but apply no subpixel interpolation of edge positions. Kisworo
et. al. [8] apply a local energy approach to localise subpixel edges. However their
experiments don’t show if there is a systematic bias for their approach. Rockett
et. al. [9] and Mikulastik [10] examine parabolic interpolation for subpixel edge

2-9525435-1 © SITIS 2006 - 531 -�

http://www.u-bourgogne.fr/SITIS


localisation. Mikulastik focuses on dealing with camera noise and Rockett et.
al. [9] find that there is no bias for edges parallel to the sampling raster. This
is because they use synthetic images for fitting their edge model and no real
world images. However, none of the researches mentioned above has measured
or described the error that leads to a systematic bias, that we are introducing
here.

In the next section we introduce our signal model and describe a sample
edge detector similar to the detector by introduced by Canny [1]. Afterwards
in section 3 we show in a calculation that a parabolic interpolation generates a
bias, which we also measure in CCD camera images in section 4. Finally we give
some conclusions and a summary in section 5.

2 Edge Detection

The following steps lead to an edge detector similar to the Canny [1] edge detec-
tor. We assume that the pulse response of the image acquisition system, in our
case a CCD camera, can be modelled by a Gaussian with variance σcam. This
is widely accepted and applied in the literature [11,2]. We model the edges to
be localised by a Gaussian with variance σedge convolved with an ideal step. An
ideal step edge modelled this way would have a variance of σedge = 0. With I(x)
being the intensity at a coordinate x, the signal for an edge at position xmax

can be modelled with

I(x) =
∫

x

(hedge(x− xmax) ∗ hcam(x)) dx

with

h(x) = − x√
2πσ3

· e−
1
2 ( x

σ )2

. (1)

The following approach describes a 1D filter applied in horizontal direction,
for detection of mostly vertical edges. It can be applied in two passes in horizontal
and vertical direction, so that all edges in a 2D image can be detected.

To be able to detect edges as maxima we have to generate a gradient image.
Since an ideal gradient operator would introduce aliasing to the image we need
a lowpass filter combined with a gradient. We choose the first derivate of a
Gaussian. The Gaussian acts as lowpass filter. Combined with the first derivate

- 532 -�



we get the desired gradient. Choosing an impulse invariance design approach
we sample the analog derivate of the Gaussian to get our digital filter. We get
minimal distortion through aliasing and windowing with σgrad = 1.0062 for a
five tab filter.

Because of the gradient operation our edges now have the form of sampled
Gaussian functions. The sampled signal g(x) we get after application of the
gradient filter described above is:

∂

∂x
I(x) = g(x) = (hedge(x− xmax) ∗ hcam(x) ∗ hgrad(x))

= (hall(x− xmax)) ,

where the functions h(x) have the same form as seen in equation 1. The variance
of the Gaussians is:

σall =
√

σ̃2
edge + σ̃2

cam + σ2
grad

=

√(
σedge

cos(ϕ)

)2

+
(

σcam

cos(ϕ)

)2

+ σ2
grad . (2)

The angle ϕ is zero for edges orthogonal to the filter and greater for rotated
edges.

The generation of the gradient signal is very similar to that used in the
well known detector by Canny [1]. Many approaches now use regression with a
parabolic function to find the subpixel peak points in the gradient image that
give us the exact edge positions. The following calculation shows that this leads
to a systematic bias.

3 Calculation of bias

We can write the following equation for a parabola

ĝpar(x) = a · x2 + b · x + c . (3)

The hat on ĝpar(x) indicates an estimated value for the real value g(x), which
is not available. The maximum of the parabola lies at

x̂max = − b

2a
. (4)
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ûe

x

g(x)

wfit

x̂max

Figure 1. A parabola fitted to the signal g(x). It is fitted to wfit = 5 samples.
The further away the sample positions are from x̂max the more the samples of
the gradient signal differ from a parabolic interpolation.

Figure 1 shows an example of a parabola fitted to the signal g(x). From
the figure we can deduce that the parabola approximates the signal g(x) only
in a window with the width wfit. Outside this window the differences between
parabola and g(x) become quite big. Furthermore the signal g(x) does not have
the form of a parabola. It is just approximated by it. Therefore the maximum
value xmax exhibits a systematic bias to the real maximum of g(x). In the fol-
lowing section we show the derivation the systematic error esys = x̂max − xmax.

3.1 Systematic error

The systematic error is a function of the window width wfit and the parameters
σall and xmax.

esys = esys (wfit, σall, xmax) (5)

It is the difference between the estimated value x̂max and the real value xmax.
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esys (wfit, σall, xmax) = x̂max − xmax

= − b

2a
− xmax (6)

For regression with a parabolic function, as described in eq. 3, the following
equation is valid and can be solved for a, b and c:

x2
1 x1 1
...

...
...

x2
wfit xwfit 1

 ·

a

b

c

 =


gpar(x1)

...
gpar(xwfit)

 (7)

A ·

a

b

c

 =


gpar(x1)

...
gpar(xwfit)

 (8)

a

b

c

 =
(
AT A

)−1
AT


gpar(x1)

...
gpar(xwfit)



= M ·


hall(x1 − xmax)

...
hall(xwfit − xmax)


= M · hall(xwfit − xmax) (9)

with the matrix

M =

mT
1

mT
2

mT
3

 =
(
AT A

)−1
AT (10)

and the vectors

hall(x) =


hall(x1)

...
hall(xN )

 xwfit =


x1

...
xwfit

 xmax =


xmax

...
xmax

 (11)
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With these expressions eq. 6 can be written as

esys (wfit, σall, xmax) = − b

2a
− xmax

= −1
2

mT
2 · hG,Ges(xwfit − xmax)

mT
1 · hG,Ges(xwfit − xmax)

− xmax (12)

For the following calculation it is assumed that the maximal sample of g(x) is
located at position x = 0. This doesn’t limit generality, since it can be achieved
by a simple coordinate transformation. Therefore we can write A as:

A =


(
−wfit−1

2

)2

−wfit−1
2 1

...
...

...(
wfit−1

2

)2
wfit−1

2 1

 . (13)

The elements di,j of a matrix D = AT A are:

d1,1 =
(
−wfit − 1

2

)4

+
(
−wfit − 1

2
+ 1

)4

+ · · ·+
(
−wfit − 1

2
+ wfit − 1

)4

=
wfit−1∑

k=0

(
−wfit − 1− 2k

2

)4

= 2 ·

wfit−1
2∑

k=0

k4 (14)

d1,2 =
(
−wfit − 1

2

)3

+
(
−wfit − 1

2
+ 1

)3

+ · · ·+
(
−wfit − 1

2
+ wfit − 1

)3

=
wfit−1∑

k=0

(
−wfit − 1− 2k

2

)3

= 0 (15)

d1,3 =
(
−wfit − 1

2

)2

+
(
−wfit − 1

2
+ 1

)2

+ · · ·+
(
−wfit − 1

2
+ wfit − 1

)2

=
wfit−1∑

k=0

(
−wfit − 1− 2k

2

)2

= 2 ·

wfit−1
2∑

k=0

k2 (16)

and

d2,1 = 0 d2,2 = d1,3 d2,3 = 0 (17)

d3,1 = d1,3 d3,2 = 0 d3,3 = wfit (18)
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and the abbreviations µ and λ defined as:

µ = 2 ·

wfit−1
2∑

k=0

k4 (19)

λ = 2 ·

wfit−1
2∑

k=0

k2 , (20)

the matrix D = AT A can be written as:

D =

µ 0 λ

0 λ 0
λ 0 wfit

 . (21)

The inverse D−1 is:

D−1 =


1
µ − λ2

µ(λ2−µwfit)
0 λ

λ2−µwfit

0 1
λ 0

λ
λ2−µwfit

0 − µ
λ2−µwfit

 . (22)

Now, the matrix M = (AT A)−1AT becomes:

M =


1
µ − λ2

µ(λ2−µwfit)
0 λ

λ2−µwfit

0 1
λ 0

λ
λ2−µwfit

0 − µ
λ2−µwfit

 ·


(
−wfit−1

2

)2

· · ·
(

wfit−1
2

)2

−wfit−1
2 · · · wfit−1

2

1 · · · 1



=


λ−

wfit
4 (wfit−1)2

λ2−µwfit

λ−
wfit

4 (wfit−3)2

λ2−µwfit
· · · λ−

wfit
4 (wfit−2wfit+1)2

λ2−µwfit

1
λ ·

(
−wfit−1

2

)
· · · · · · 1

λ ·
(

wfit−1
2

)
λ
4 (wfit−1)2−µ

λ2−µwfit

λ
4 (wfit−3)2−µ

λ2−µwfit
· · ·

λ
4 (wfit−2wfit+1)2−µ

λ2−µwfit

 (23)

with the vectors mT
1 and mT

2 :

m1 =
1

λ2 − µwfit
·



λ− wfit

(
wfit−1

2 − 0
)2

λ− wfit

(
wfit−1

2 − 1
)2

...

λ− wfit

(
wfit−1

2 − (wfit − 1)
)2


(24)
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m2 =
1
λ
·


−wfit−1

2
...

wfit−1
2

 . (25)

As an example we consider an ideal edge with σedge = 0 and ϕ = 0. For the
camera we choose σcam = 1, and for the gradient filter we set σgrad = 1, 0062 as
chosen in section 2. For this example σall is

σall =

√(
0

cos(0)

)2

+
(

1
cos(0)

)2

+ 1, 00622 = 1.4186 . (26)

Figure 2 shows the systematic error esys as calculated in equation 12 for the
values considered in this example. There are three curves for different values of
wfit. For greater values of wfit the systematic error becomes greater. For xmax =
0 the systematic error is zero. In this case the samples of our gradient function
are symmetric around the maximum sample and every symmetric function fitted
through them results in the right estimated value x̂max. The systematic bias left
and right of the coordinate xmax = 0 is due to the fact that the gradient of the
image signal, which can be approximated by a Gaussian function, is interpolated
with a parabolic function. This also explains why the bias is greater at greater
values of wfit. The further away the sample positions are from xmax the more
the samples of the gradient signal differ from a parabolic interpolation. This can
be seen in figure 1.

4 Experimental results

In order to verify the calculation from the last section, real world experiments
are performed. For the comparison of calculated and measured values, ground
truth data is needed. We recorded a scene containing one exact black and white
edge. This was achieved by capturing a high resolution LCD showing a black
and white edge. The edge lies vertically in the image so that in every row of
the image there is one edge location. The camera is slightly rotated around its
optical axis to achieve that the filmed edge appears slightly slanted. This way
it has the whole range of possible subpixel edge positions from xmax = −0.5 to
xmax = 0.5. Groundtruth edge positions are determined by fitting a line through
all estimated edge positions. To be sure that camera noise is not affecting the
analysis an average image was used. 1000 frames of the test image were taken
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Figure 2. Systematic error esys(xmax) for the edge position when a parabolic
function is used for interpolation of subpixel values. σall is set to σall = 1, 4186.

with the camera installed on a tripod. The average value for each pixel position
is used for the test image. Figure 3 shows a zoomed in view of our test image
taken with a Sony DXC-D30WSP 3CCD video camera.

Figure 4 shows the measured bias em which is given through the difference
of ground truth edge positions and estimated edge positions for each line of the
test image.

Since the bias em repeats periodically for subpixel coordinates of edges from
−0.5 to 0.5, it is sufficient to discuss one period of the signal, as can be seen
in figure 5. Additional to the measured bias em, also the estimated bias esys is
shown, for comparison. Measured and estimated values show only small differ-
ences, that can be explained by small differences in our signal model to that of
the real camera.

In [10] a similar edge detector is examined in respect for the uncertainty
of edge localisation due to camera noise. A Gaussian distributed localisation
error variance of less than 0.002 pel2 for most edges was found in images with
a high PSNR of 42. This corresponds to a standard deviation of 0.044 pel. The
maximum bias esys for a parabolic function through three sample values wfit = 3
is about 0.025 pel. This shows that the error introduced by the bias described
here has almost the same size as the uncertainty due to camera noise and has to
be considered in high level tasks that use edge positions as input data.
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Figure 3. Test image for comparison of measured an calculated values. The edge
is slightly slanted.
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Figure 4. Measured bias em for each line of the test image.

5 Conclusions

This work has shown that edge detectors using parabolic functions for subpixel
edge localisation estimate biased values for the edge positions. This is due to
the fact that the gradient of the image signal, which can be approximated by a
Gaussian function, is interpolated with a parabolic function. This bias is in the
same range as errors of the edge positions due to camera noise. Therefore it is
advisable to consider this bias in high level tasks that build upon precise edge
localisation.
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Figure 5. Measured bias em for lines 170 to 285 of the test image. The dashed
lines show the the estimated bias esys for comparison.
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