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Abstract
The recent advances in automatic speech recognition (ASR)
technologies using end-to-end machine learning do not trans-
fer well to children’s speech. One cause is the high pronuncia-
tion variability and frequent violations of grammatical or lexical
rules, which impedes the successful usage of language models
or powerful context-representations. Applying these methods
affects the nature of the resulting transcript rather than improv-
ing the overall recognition performance. In this work we ana-
lyze the diversity of the transcripts from distinct ASR-systems
for children’s speech and exploit it by applying a common com-
bination scheme. We consider systems with various degree of
context: Greedily decoded and lexicon-constrained connection-
ist temporal classification-models, attention-based encoder de-
coders, and Wav2Vec 2.0, a powerful context-representation.
By exploiting their diversity we achieve a relative improvement
of 17.8 % on phone recognition compared to the best single sys-
tem.
Index Terms: speech recognition, children’s speech, model
combination

1. Introduction
The advances over the past decade in automatic speech recog-
nition (ASR) technologies usually attributes to huge end-to-end
(E2E) models providing context-rich representations [1]. Con-
currently, the implicit [2] or explicit [3] usage of a language
model (LM) embeds additional language-specific knowledge
into the resulting transcripts. Even tough this leads to an in-
credible recognition performance, the transfer to low-resource
domains like children’s speech remains a challenging task [4].
One cause for the challenges in children’s speech is the high
pronunciation variability and frequent violations of grammat-
ical or lexical rules [5], which the transcript has to capture if
child speech assessment is a desired downstream task [6]. Em-
bedding highly specialized LMs can help in some cases [4], but
does not transfer well between different domains of children’s
speech [7]. Explicitly modeling the most common error patterns
is also promising [8], but requires the knowledge of a canoni-
cal pronunciation [9, 10] and, therefore, does not scale well to
spontaneous speech.

This leaves us with two extrema: Either specializing a
LM as far as possible towards children’s speech and utilizing
context-rich representations or omitting inter-frame dependen-
cies to capture more accurately local deviations. Specializing
a LM gives reasonable constraints on the decoding graph when
the intelligibility of the audio segment is limited. On the other
side these models capture less pronunciation variability, e. g.,
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sequence-to-sequence (S2S), a system that intrinsically learns
a LM, has problems with rare or unseen words [2]. One cause
we noticed is that S2S tends to generate whole words, while
avoiding word fragments or neologism. Relying on context,
i. e., incorporating information from the surrounding audio to
infer the local segment [1], has often a similar effect. As we
will show, the combination of both increases the general robust-
ness of the recognition system but fails to capture local vari-
ability of the children’s speech. For the other extreme, captur-
ing as much local pronunciation variability as possible, connec-
tionist temporal classification (CTC) [11] outperforms S2S on
children’s speech as shown by Shivakumar et al. [7]. Here the
omission of the inter-frame dependencies of CTC is valuable, as
it captures more reliably deviations from an expected pronunci-
ation [12, 7].

Therefore, in this work we will investigate the diversity of
modern E2E-systems for children’s speech and exploit their dif-
ference to improve upon phone error rate (PER). This allows us
to utilize the best from both worlds: Context-dependent sys-
tems, like Wav2Vec 2.0 [1], recovering well on more difficult
audio segments and context-independent systems, like greed-
ily decoded CTC-models, that capture a higher degree of local
variability. For the merging process we rely on ROVER [13],
a method that is commonly applied for such tasks. Knill et
al. [14] also combine transcripts for children’s speech using
ROVER. However, the authors neither considered E2E-systems
nor investigated the nature of the transcripts. Former is of spe-
cial interest, as Shivakumar et al. [7] demonstrated that E2E
models outperform HMM-DNN systems on children’s speech
in terms of character and word recognition. Kurata et al. [15]
proposed a powerful merging scheme for CTC-based systems.
We will show that not the merging scheme, but the diversity of
the utilized transcripts is more important. Our contribution is
two-fold: We analyze different modern ASR-systems on chil-
dren’s speech and summarize their strengths as well as weak-
nesses. Furthermore, we quantify the effect of combining the
most diverse systems in terms of PER and analyze the effect on
child speech assessment, a possible downstream task.

2. Speech Recognition Techniques

In this section we describe the investigated ASR-techniques. In
the following we refer to the features of a small audio window
as frame. The token represents a character or phone, depending
on the desired output sequence. We define a system as a com-
bination of training techniques and feature extractors, while a
model defines a specific trained instance of a system.



2.1. Context-Independent Techniques

In this work we consider models trained with connection-
ist temporal classification (CTC) [11] as context-independent
due to the omission of the inter-frame correlation. This as-
sumption does not strictly hold, because convolutional neural
networks (CNNs) provide information from the surrounding
frames. Nevertheless, we show in Sec. 5 that CTC has the best
capabilities to capture local deviations from an expected pro-
nunciation compared to, e. g., S2S.

CTC solves the frame-token alignment problem efficiently
using dynamic programming. First, all consecutive, identically
decoded time-frames are collapsed to one token. An addi-
tional <blank>-token allows the repetition of tokens, which is
removed in a second step. The simplest and also most inde-
pendent way of decoding such systems is to greedily select the
Viterbi path, which we will refer to as CTC-greedy. A more
elaborated way of decoding is described in Sec. 2.2.1

2.2. Context-Dependent Techniques

In this section we will describe two different systems that con-
strain the resulting output, either explicitly [3] or implicitly [2].
Furthermore, we utilize Wav2Vec 2.0 (W2V) [1] in combination
with all presented training/decoding techniques. It is known to
provide a powerful context-representation.

2.2.1. Constrained CTC Decoding

Constraining the CTC-emissions has a lucrative advantage: No
additional system needs to be trained. One approach for con-
strained CTC decoding is to utilize weighted finite state trans-
ducer and efficiently limit the dense emission graph E from the
CTC-model by composing it with a lexicon and LM [3]:

D = E ◦ (C ◦ min (det (L ◦ G))) ,

where D is the resulting decoding graph, L a lexicon, and G
a LM. C is a CTC-topology allowing for repetitions of char-
acters and insertions of the blank token. The operator ◦ repre-
sents the composition of the graph, min the minimization and
det the determinization, respectively. Both, the lexicon and the
LM, are commonly trained on large amounts of in domain text-
data, where a corresponding audio is not necessarily required.
In our work we will omit the LM and only constrain our decod-
ing towards a lexicon that is based on in-domain samples from
a children’s speech corpus.

2.2.2. Sequence-to-Sequence

Sequence-to-sequence systems intrinsically learn a LM [2],
which makes them especially powerful if large amounts of data
are available. In this work we utilized an attention-based en-
coder decoder (AED) system [2]. A bidirectional RNN-encoder
computes for each frame a feature vector, which are combined
by building a weighted sum. In our work the weights are com-
puted based on a location-based attention. Including the previ-
ously decoded token into the model input is the major cause that
AEDs implicitly learn a LM and lexicon.

Watanabe et al. [16] introduced a hybrid CTC/S2S train-
ing and decoding scheme. Not including the CTC-loss into the
training process lead to divergence in our case and, therefore,
we do not further investigate the impact of plain S2S training
or its decoding. Additionally, we noticed a higher diversity to-
wards the other systems when using the algorithm described by
Watanabe et al. [16] compared to greedily decoding the S2S-
model, which is desirable in our work.

2.2.3. Wav2Vec 2.0

Wav2Vec 2.0, introduced by Baevski et al. [1], is a context-
based feature representation of raw audio. The network con-
sists of three main components: A CNN-based feature ex-
tractor, a transformer-based context network, and a quantized
codebook. The entire system is trained E2E in an unsuper-
vised fashion, which allows to utilize large amounts of unla-
beled data. The general idea of the training procedure is that
the context network has to recover randomly masked informa-
tion from neighboring features. The resulting model provides
a strong context-representation for speech, which is commonly
finetuned by training a small dense head in supervised fashion
using the methods introduced in Sec. 2.1 and Sec. 2.2.2.

3. Model Combination
In this section we discuss, how an ensemble of N transcripts is
merged. The ensemble may consists of transcripts from models
of the same ASR-system or from different systems.

3.1. ROVER

As mentioned, we rely on ROVER [13], a simple but effective
system for transcript combination. First, the N transcripts are
globally aligned, where the alignment method is independent
of ROVER. In the original work two different versions are pro-
posed to select the final token per index in the global alignment:
Weighted selection based on the uncertainty of the underlying
ASR-system and frequency based selection. While a token-
level uncertainty is naturally given for S2S-based models, the
usage of CTC-models makes an approximation necessary. In
the next section we will introduce different weighting schemes
for ROVER and evaluate their general necessity in Sec. 6.

3.2. Weight Selection

CTC-based systems do not provide an uncertainty measure on
token-level intuitively. While there exists a method based on
Monte Carlo Dropout (MCD) [17], we did not find any im-
provements in terms of recognition performance using them for
weighting (see Sec. 6). This is reasonable as the same ensemble
is applied to ROVER.

Instead, we directly target phonetic inventories, a possible
downstream task commonly applied during child speech assess-
ment [6], by manually selection suitable weights. Phonetic in-
ventories require high accuracy especially on rare phones. We
show in Sec. 6 that manually increasing the weighting for one
specific system, which achieves a greater performance on rare
phones, already leads to higher accuracy for these phones with-
out harming the accuracy of the other phones.

4. Experimental Setting
We train and evaluate all models on the kidsTALC corpus [18],
which consists of typically developing, monolingual, and Ger-
man speakers aging from 3 ½–11 years. The training data is
based on ∼5 h of spontaneous children’s speech, equally dis-
tributed over gender and age. For further information on the
characteristics of the kidsTALC corpus we refer to the corre-
sponding publication [18]. As suggested by the authors, we ex-
tend the kidsTALC corpus by Mozilla Common Voice (MCV) 1.
We vary the presence of MCV by adjusting the fraction ρMCV

1https://commonvoice.mozilla.org/en/datasets,
Version 11.0, German



in each batch between ρMCV ∈ {0.25, 0.5}, treating it as a
hyperparameter. From MCV the model sees a maximum of
∼465 h of speech during training, due to the huge difference
in corpus size each segment is only seen once.

We implement and train all models based on the TIMIT
recipe2 for ASR from SpeechBrain [19] and deploy for all de-
coding schemes the default settings. In our work the model
output represents a probability distribution across the restricted
IPA phone set proposed in the kidsTALC corpus [18]. For
stability reasons, we adjust the recipe and deploy the Adam
optimizer [20] and the OneCycleLR scheduler [21]. We ad-
just the learning rate lr ∈ {1e − 3, 3e − 3} and dropout rate
dr ∈ {0.15, 0.25}, respectively. By also varying the random
seed we obtained multiple models and selected the best five
different models per system using the validation split. Addi-
tionally, we average all results on the test set using two differ-
ent train-validation splits. For the constrained CTC decoding
we adopt k23. We reimplement ROVER using the lingpy pack-
age [22] for the global alignment.

Regarding W2V, we use the MCV recipe4 for ASR from
SpeechBrain [19] with the same learning rate and scheduler as
above. We train a small dense network on kidsTALC+MCV us-
ing the output of a pretrained W2V-model from Hugging Face5

as input features. The feature extractor as well as the context
network are frozen. This setup replaces the Mel feature banks
combined with a CRDNN as applied in the basic recipes above.
We applied the same training approaches from Sec. 2.1 and
Sec. 2.2.2.

5. System’s Diversity
In this section we will investigate the diversity of all trained
systems. We will start by comparing the systems to the manual
transcript, both on the phone error rate (PER) and the word error
rate (WER). The WER is computed on the phonetic and not
on the orthographic transcript. Even tough we are exclusively
interested in the improvement of the PER, we notice the WER
to be helpful when analyzing the diversity on a coarser level.
For the combination of W2V and S2S, we notice some models
to completely diverge, i. e., reaching extremely high error rates.
If the PER is greater than 100.0 on the validation set, we do not
consider the models in this section. However, they are included
in Sec. 6 as they still contribute positively to the final results.
Next we compute the difference between all systems, again on
PER and WER. Closing, we analyze if some systems are more
performant in recognizing certain phones than others.

In Tab. 1 we compute the PER and WER with respect to
the manual transcript. The systems based on W2V always out-
perform their direct counterparts. The same holds for ROVER,
when joining multiple models of one system. Generally, CTC-
based systems, when greedily decoded, outperform all other
systems with respect to PER. On the other hand, S2S-based
systems outperform the other systems with respect to WER.
This shows, that omitting the inter-frame dependencies helps to
be locally more accurate, but generally fails more often to cap-
ture the entire word. Overall all systems perform similarly well,
which is interesting as we noted high disagreement between the
resulting transcripts, which we will discuss next.

2https://github.com/speechbrain/speechbrain/
tree/develop/recipes/TIMIT/ASR, commit 1bc762c

3https://github.com/k2-fsa/k2, version 1.23.2
4.../recipes/CommonVoice/ASR, commit 002779c
5https://huggingface.co/facebook/

wav2vec2-large-xlsr-53-german

Table 1: PER and WER with respect to the manual transcript.
Avg refers to the mean across all models after computing the
error rate, while [13] refers to merging the transcripts using
ROVER first. For any speech recognition system ROVER and
W2V works best. CTC-greedy is better on PER, while S2S per-
forms better on WER. Con. represents CTC-Constrained.

CRDNN W2V+DNN

Greedy Con. S2S Greedy Con. S2S

PER Avg 23.7 24.4 42.7 21.0 21.5 25.3
[13] 22.1 22.9 31.4 19.7 20.7 21.5

WER Avg 61.5 61.1 59.7 55.5 55.6 50.7
[13] 58.7 59.8 54.5 52.9 54.6 47.8

Table 2: Difference between all utilized systems using the PER.
We averaged across all seed combinations for two given sys-
tems. Gr. represents CTC-greedy and Con. CTC-Constrained.

CRDNN W2V+DNN

Greedy Con. S2S Greedy Con. S2S

C
R

D
N

N Gr. 19.0 - - - - -
Con. 26.6 18.9 - - - -
S2S 42.0 45.4 39.7 - - -

W
2V

+D Gr. 34.1 36.6 50.3 16.5 - -
Con. 34.9 32.2 50.4 23.8 15.5 -
S2S 36.1 38.0 47.4 24.3 27.3 15.8

In Tab. 2 we computed the PER between two given sys-
tems, not considering the manual transcript. As mentioned, the
disagreement between the systems is higher than the error rate
towards the manual transcript, i. e., merging these systems is
promising. Tab. 2 shows that the similarity between models of
a given system (diagonal values) is always higher than to any
other system. This means that the inclusion of multiple dis-
tinct systems increases the diversity in the resulting ensemble
and, therefore, the potential for improvement. Going one step
further, we find more similarity when grouping the systems by
the feature encoder, i. e., if the considered systems are based on
a CRDNN (top left section) or W2V+DNN (bottom right sec-
tion). Intuitively, that makes sense, because W2V introduces
a high amount of context into the ASR-system. Therefore, the
highest dissagreement is between CRDNN and W2V-based sys-
tems (bottom left section). It needs to be noted that the combi-
nation of CRDNN+S2S greatly varies from any other combina-
tion, even leading to high discrepancy between its models.

This behavior is not visible, when looking at the same
table for WER, as shown in Tab. 3. The combination of
CRDNN+S2S has a intra- and inter-system consistency of sim-
ilar magnitude compared to the other systems when evalu-
ating on the WER. Increasing the amount of context and
LM-constraints improves the WER on intra-system agreement,
bringing it closer to the magnitude of the PER in Tab. 2.
This means models from a system relying on W2V and LM-
constraints mainly output either entirely identical or completely
different words. This shows again that these system are not able
to capture local variability well.

In our work we define the performance of a system on a
certain phone by the difference between true positives and false
negatives, i. e., correctly labeled phones minus its insertions.
We refer to this metric as phone goodness. In Tab. 4 we list



Table 3: Difference between all utilized systems using the WER.
We averaged across all seed combinations for two given sys-
tems. Gr. represents CTC-greedy and Con. CTC-Constrained.

CRDNN W2V+DNN

Greedy Con. S2S Greedy Con. S2S

C
R

D
N

N Gr. 57.0 - - - - -
Con. 68.8 39.8 - - - -
S2S 67.8 66.6 54.6 - - -

W
2V

+D Gr. 77.2 77.3 77.7 50.7 - -
Con. 76.6 61.3 72.3 64.2 33.0 -
S2S 73.8 70.5 67.8 58.6 57.8 35.5

Table 4: List of phones on which a system outperforms the other
systems on phone goodness by at least 5 %. Gr. represents CTC-
greedy and Con. CTC-Constrained.

C
R

D
N

N Gr. /t/, /D/, /T/, /X/
Con. / /, /X/
S2S

W
2V

+D Gr. /m/, /p/, /t/
Con. / /, /u:/, /oe/
S2S / /, /g/, /h/, /m/, /p/, /t/, /u:/, /N/, /5/, /Y/

all phones of a system for which the phone goodness outper-
forms the next best system by at least 5 %. We allow up to three
equally well performing systems for one phone if they share
a gap to the next best performing system. CTC-greedy with-
out W2V generally performs better on fricatives, but especially
well on /D/, /T/, /X/. Systems based on W2V are usually better
on nasals and plosives, but also on certain vowels.

6. Application
Before we present the results of the model combination, we an-
alyze the improvement in terms of phone recognition by ap-
plying uncertainty for ROVER and compare ROVER with the
merging scheme of Kurata et al. [15]. Since the uncertainty
for CTC-based systems is most difficult, we evaluate the un-
certainty’s impact on PER only for the system-combination of
CTC-greedy and CTC-constrained. Applying the unweighted
ROVER leads to a PER of 20.8 %, while weighting the ROVER
using MCD [17] results in 21.6 %. Therefore, we do not
consider any uncertainty estimation for ROVER. To compare
ROVER with Kurata we merge different models of CTC-greedy.
For ROVER this leads to 22.1 %, as seen in Tab. 1, and Kurata
achieves 22.4 %. While Kurata improves upon the unmerged
models, it is slightly worse than ROVER.

In Tab. 5 we combine all systems with the same feature en-
coder. We show that the relative improvement, towards the sin-
gle best system joined with ROVER, is independent of the fea-
ture encoder. The largest gain is achieved if all three systems are
combined, leading to 10.0 % and 10.7 % relative improvement
for CRDNN and W2V, respectively. When only considering
two systems, CTC-greedy and S2S perform better compared to
CTC-greedy and CTC-constrained. This behavior is expected
based on the diversity analysis in Sec. 5. However, latter has
the benefit that no additional model needs to be trained.

In Tab. 6 we also combine the different feature encoders, as
Sec. 5 showed a higher diversity than sticking to one represen-
tation. Merging all systems does perform already much better.

Table 5: PER with respect to the manual transcript. We com-
bine different ASR-systems with the same feature encoder using
ROVER [13]. Merging all systems works best. Con. represents
CTC-Constrained.

Greedy Con. S2S CRDNN W2V+DNN

✓ X X 22.1 19.7
✓ ✓ X 20.8 18.6
✓ X ✓ 20.4 17.9
X ✓ ✓ 20.7 18.5
✓ ✓ ✓ 19.9 17.6

Table 6: PER with respect to the manual transcript. We com-
bine different ASR-systems using ROVER [13], also combining
different feature encoder. Due to the higher diversity this rea-
sonably leads to the overall best results.

CRDNN W2V+DNN
PER

Greedy Con. S2S Greedy Con. S2S

✓ ✓ ✓ ✓ ✓ ✓ 16.2
✓ X ✓ ✓ X ✓ 16.2
✓ X X X X ✓ 17.3

However, an ablation study showed that CTC-constrained is not
necessary. Overall this leads to a PER of 16.2 %. Compared to
the best single-system combination including ROVER, which
is W2V+CTC-greedy with a PER of 19.7 % (see Tab. 1), we
achieve a relative improvement of 17.8 %.

A phonetic inventory is a possible downstream task for chil-
dren speech assessment. This makes especially the performance
on the rare phones important. While the weighting according to
an uncertainty was not promising, we manually set a weight
for certain systems. In our work we exemplary target to im-
prove on the fricatives and, therefore, increase the weight for
the fricative outputs of all CTC-greedy models. For example
this trivial approach already corrects 10.8 % with respect to the
best combination in Tab. 6 and 54.1 % with respect to the best
single model in Tab. 1 of the incorrect labels of the phone /ç/.
We will investigate more elaborated methods of weighting and
the direct impact on the downstream task in future work.

7. Conclusion
In this paper, we investigate the diversity as well as the strengths
and weaknesses of modern E2E systems on children’s speech.
We notice high dissimilarities in the resulting transcripts on to-
ken and word level between the investigated systems, while
maintaining a similar overall performance with respect to a
manual transcript. Applying powerful context-representations
and LM-constraints has a high impact on the nature of the tran-
script, which results in an improved WER while loosing the
local variability. We exploit this diversity by applying ROVER,
a common system for transcript merging. Fully exploiting the
divers set of systems leads to a relative improvement of 17.8 %
on the PER.
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