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Abstract. The extraction of scale invariant image features is a fundamental task
for many computer vision applications. Features are localized in the scale space
of the image. A descriptor is build for each feature which is used to determine
the correspondence to a second feature, usually extracted from a second image.
For the evaluation of detectors and descriptors, benchmark image sets are used.
The benchmarks consist of image sequences and homographies which determine
the ground truth for the mapping between the images. The repeatability crite-
rion evaluates the detection accuracy of the detectors while precision and recall
measure the quality of the descriptors.
Current data sets provide images with resolutions of less than one megapixel. A
recent data set provides challenging images and highly accurate homographies. It
allows for the evaluation at different image resolutions with the same scene con-
tent. Thus, the scale invariant properties of the extracted features can be exam-
ined. This paper presents a comprehensive evaluation of state of the art detectors
and descriptors on this data set. The results show significant differences compared
to the standard benchmark. Furthermore, it is shown that some detectors perform
differently on different resolutions. It follows that high resolution images should
be considered for future feature evaluations.

1 Introduction

Scale invariant features play an important role in many computer vision appli-
cations, such as object recognition or scene reconstruction. These applications
require discriminative and accurate features on images with large changes in illu-
mination and perspective [9,18].
New approaches in feature detection [2,3,11,14,16,17] and descrip-
tion [1,2,3,7,11,15,16] usually use the reference test set and the evaluation
protocols provided in [14,15]. It contains sequences of still images (800� 640
pixel resolution) with changes in illumination, rotation, perspective, and scale.
Only two out of eight sequences provide perspectively distorted images. The
mapping from one image to the next is restricted to a homography. For the
benchmark test, the ground truth homography matrices are provided. The most
important criterion for the accuracy of the detectors is the repeatability criterion.
The descriptors are evaluated with precision and recall curves.
Nowadays, high resolution images become more and more important. Resolu-
tions of 4K (4000�3000 pixels) are required for the digital cinema. Even current
smartphones provide large resolutions, such as the iPhone 6 with eight megapix-
els. However, feature evaluations are performed on images with resolutions of
less than one megapixel. An evaluation of state-of-the-art feature detectors and



descriptors on high resolution images is still missing. Recently, a high resolu-
tion benchmark data set was published 1. It provides image resolution of up to 8
megapixels [6] (a first step towards 4K) and focuses on the scenario of perspec-
tively distorted images, which is demanded by scene reconstruction applications
like in [9,18]. Our contribution is the evaluation of state-of-the-art feature detec-
tors and descriptors on the benchmark [6] compared to [14]. We examine which
of the detectors and descriptors are able to transfer their performance to large
resolutions.
In the following Section 2, the feature detectors and descriptors are introduced.
In Section 3, the experimental setup is presented. Section 4 shows the results and
Section 5 gives the conclusions.

2 Overview

Several publications give informative overviews on scale invariant feature detec-
tors and descriptors, e.g. [8,12]. Since we concentrate on the evaluation, we just
give a short overview of the competitors. The evaluated detectors are Wave [17],
A-KAZE [2], ORB [16], BRISK [11], SURF [3], and SIFT [13] (cf. Table 1).
The evaluation criterion is the repeatability using the matlab script provided by
the authors of [14]. The resulting best detector is used in the descriptor evaluation.
The evaluated descriptors are A-KAZE [2], LIOP [19], MROGH [7], GLOH [15],
and SIFT [13] (cf. Table 2). In our evaluation, we exclude the descriptors ORB,
BRISK, and FREAK. These approaches concentrate on fast computation, and
their performance in accuracy is to our experience equal to or lower than SIFT
(cf. [4,8]).
Our evaluation aims at finding the most accurate detector together with the best
possible descriptor. The implementations are taken as they are provided by the
authors (cf. Table 1 and 2) using default parameters. For comparison, we added
the computation times found in our experiments in milliseconds per feature, com-
puted on i7 CPU, 3:50 GHz.

Table 1: The detectors which are compared in the results section.
detector implementation year published computation time [ms]

SIFT [13] Hess code [10] 2004 4:38
SURF [3] Author’s binary 2006 0:54

BRISK [11] OpenCV 2.4 2011 0:99
ORB [16] OpenCV 2.4 2011 0:47

A-KAZE [2] Author’s code 2013 1:04
Wave [17] Author’s binary 2013 5:58

1 http://www.tnt.uni-hannover.de/project/feature_evaluation/

http://www.tnt.uni-hannover.de/project/feature_evaluation/


Table 2: The descriptors with their default descriptor lengths dl which are used for the
comparisons in the results section.

descriptors implementation dl year published computation time [ms]
SIFT [13] Oxford binary 128 2004 1:74

GLOH [15] Oxford binary 128 2005 1:87
MROGH [7] Author’s code 192 2011 2:35
LIOP [19] Author’s binary 144 2011 1:43

A-KAZE [2] Author’s code 61 2013 7:97

3 Experimental Setup

Most evaluations employ the benchmark provided in [14]. We mainly use the re-
cently published benchmark data set [6] for two reasons: (1) it provides higher ac-
curacy [5] and image resolution (even different resolutions for the same scenes),
(2) it concentrates on the perspective change scenario which is in the focus of
this evaluation. For comparison, we include the most popular perspective change
sequence Graffiti of [14]. The first images of the sequences are shown in Figure 1.
We use the repeatability criterion for the detectors evaluation while precision and
recall determines the quality of the descriptors. The overlap error parameter is set
to 0:4 [14].

(a) Graffiti (b) Posters (c) There (d) Grace (e) Colors (f)Underground

Fig. 1: First images of the input image sequences. The resolution is 800� 640 for (a)
Graffiti and up to 3456�2304 for the sequences (b) - (f).

3.1 Feature Detection

The detectors provide a surprisingly large variation in extracted numbers of fea-
tures. The numbers of features heavily dependent on texture, perspective, and
resolution of the considered image. The detectors provided by OpenCV (ORB,
BRISK) tend to extract many more features (sometimes more than 40000) than
the others. Thus, we have to limit the number of detected points. For this purpose,
the attribute response is used for each feature in OpenCV. For the evaluation, we
sort the features by their response and choose the first n f features. The number
n f is determined by the maximum of detected features by the others (A-KAZE,
Wave, SURF, SIFT). In most cases, A-KAZE provides the largest number of fea-
tures. The results for the repeatability are shown in Section 4.1.



(a) Underground 1365�1024 (b) Underground 2048�1365 (c) Underground 3456�2304

Fig. 2: Feature detection of the Wave detector on different resolutions.

3.2 Feature Descriptors

Since the A-KAZE detector provides the highest accuracy (cf. Section 4.1) and
appropriate numbers of features for all of the sequences it is used for the detection
task. Then, the descriptors are calculated by all methods as shown in Table 2. We
use only original implementations from the authors (source code or binaries). For
each detector, default parameters are used. Note, that for the descriptors different
lengths dl are provided by default (cf. Table 2). The results for precision and
recall of the descriptors are shown in Chapter 4.2.

4 Experimental Results

The results for the detector evaluation is demonstrated in Section 4.1 while the
results for descriptors is shown in Section 4.2. The approaches are subsumed in
Table 1 and Table 2, respectively.

4.1 Detector Evaluation

The results for the repeatability are demonstrated in two sets:
1. A comparison between low-resolution and high-resolution for the same

scenes in Figure 3 and Figure 4. (Grace, Underground, and Colors). Here,
different performances are shown for some competitors.

2. The results for low-resolution input images (Graffiti, Posters, and There)
in Figure 5. For these sequences, the results for higher resolution show no
significant differences (Graffiti and There).

The first set shows that the performance decreases in general when using larger
image resolutions. There are some examples, where the performance drops dras-
tically. One example is the result of the Wave detector for the Underground se-
quence (cf. Figure 3). Here, the numbers of valid feature pairs for 8 megapixels
are even smaller than the numbers for 1.5 megapixels. In Figure 2, the detec-
tion result of Wave is demonstrated on a part of the first image of Underground.
On the full image, 7735 points are detected on resolution 1365� 1024, 6821 on
2048�1365, and only 3282 on 3456�2304. On the contrary, Wave shows good
performance on the Colors sequence. The Colors sequence provides a second
example for a differing performance of a detector. The repeatability of ORB is
significantly lower for 8 megapixels than for 1.5 megapixels. The BRISK detector
gives poor results for the large resolution compared to the low resolution versions.
The best results are provided by the A-KAZE detector.



The second set demonstrates results using smaller resolutions (cf. Figure 5). For
Graffiti and Posters, ORB performs best, followed by A-KAZE. The challenging
There sequence (strong viewpoint change) shows very low detection performance
of Wave. It detects only 23 features in the first image of the sequence. Again, A-
KAZE provides very good results for each of the sequences.
The overall results are subsumed in Table 3. The best results are achieved with the
A-KAZE detector. ORB provides surprisingly good results for most sequences.
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(a) Grace 1:5 MPixel
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(c) Colors 1:5 MPixel
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(d) Grace 8 MPixel
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(e) Underground 8 MPixel
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(f) Colors 8 MPixel

Fig. 3: Repeatability results for 1:5 megapixels (top row, 1365�1024) and 8 megapixels
(bottom row, 3456�2304) for the sequences Grace, Underground, and Colors.

4.2 Descriptor Evaluation

Since A-KAZE provides the best results for feature detection, this approach is
used. For the descriptor evaluation, the sequence test set is extended with the
sequences Wall, Boat, and Bikes [14]. The results are shown in Figure 6 (Graf-
fiti and Wall) and in Figure 7 (Boat and Bikes) for the lower resolution images
(0.5 megapixels). The comparisons with different resolution (1.5 megapixels and
8 megapixels) of the same scene are demonstrated Figure 8 (Grace), in Fig-
ure 9 (Underground), in Figure 10 (Colors), and in Figure 11 (There). For the
Posters sequence, too many features are extracted for the large resolution ver-
sion (> 45000) to evaluate with the matlab script. We show the results of the 1.5
megapixels sequence in Figure 12. The overall results are subsumed in Table 4.
Like in the detectors evaluation, there are several examples with varying per-
formances of descriptors on different resolutions but the same scene. For the
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(a) Grace 1:5 MPixel
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(b) Underground 1:5 MPixel
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(c) Colors 1:5 MPixel
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(d) Grace 8 MPixel
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(e) Underground 8 MPixel
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Fig. 4: Absolute numbers or valid feature pairs for 1:5 megapixels (top, 1365� 1024)
and 8 megapixels (bottom, 3456�2304) for Grace, Underground, and Colors.
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(a) Graffiti: Repeatability
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(b) There: Repeatability
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(c) Posters: Repeatability
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(d) Graffiti: Correspondences
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(e) There: Correspondences
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(f) Posters: Correspondences

Fig. 5: Repeatability (top) and absolute numbers of features for the sequences Graffiti
(0:5 megapixels), There, and Posters (1:5 megapixels).



Table 3: The results for the detectors test field.
Input Ranking

Sequence Resolution 1ST 2ND 3RD 4TH 5TH 6TH

Grace 1:5 MP A-KAZE ORB SURF/SIFT Wave BRISK
Grace 8:0 MP A-KAZE ORB SURF/SIFT Wave BRISK

Underground 1:5 MP A-KAZE/ORB Wave/SURF/SIFT BRISK
Underground 8:0 MP A-KAZE/ORB SURF SIFT Wave BRISK

Colors 1:5 MP A-KAZE/ORB/Wave SURF SIFT BRISK
Colors 8:0 MP A-KAZE/Wave SURF ORB SIFT BRISK
Graffiti 0:5 MP ORB A-KAZE Wave/SURF/SIFT BRISK
There 1:5 MP ORB A-KAZE/SURF SIFT BRISK Wave

Posters 1:5 MP A-KAZE/ORB Wave/SURF/SIFT BRISK

Grace sequence, the A-KAZE descriptor provides better results than SIFT for
1.5 megapixels while being worse than SIFT for 8 megapixels (cf. Figure 8). A
second example is the LIOP descriptor on the Underground sequence(cf. Fig-
ure 9). For 1.5 megapixels, it performs very good (ranking 2ND in the test field)
while the performance drops significantly for 8 megapixels. The LIOP descriptor
provides the most varying result for different sequences. For Wall, it ranks 4TH

(cf. Figure 6) while providing the best results for Posters (cf. Figure 12).
As shown in Table 4, the overall best descriptor results are provided by MROGH,
followed by LIOP. The MROGH descriptor is theoretically rotational invari-
ant [7]. Thus, the estimation of a dominant orientation is not required. The Boat
(cf. Figure 7) sequence illustrates this strength. Interestingly, MROGH provides
the best results for nearly every sequence tested in this evaluation. Although the
A-KAZE detector provides the most accurate features (cf. Section 4.1), its de-
scriptor is only ranked 6TH in this test field. As expected, GLOH is slightly better
than SIFT, ranking 3RD and 4TH.

5 Conclusions

A recent benchmark data set [6] allows for the evaluation of scale invariant fea-
ture detectors and descriptors on high resolution images. The benchmark enables
the comparison of the approaches on different resolutions of the same scene. The
evaluation presented in this paper concentrates on the accuracy of detectors and
descriptors at different image resolutions. It is shown that different resolutions
can lead to significantly different results for detectors (Wave, ORB) and descrip-
tors (LIOP, A-KAZE). The most accurate detector is the A-KAZE detector. The
A-KAZE regions are used for the evaluation of state of the art descriptors. Here,
the MROGH descriptor leads to the best results.
The evaluation shows that the benchmark [6] offers new and interesting results
regarding accuracy and high image resolutions. Furthermore, it offers the unique
possibility to examine the behavior of the detectors and descriptors on different
resolutions of the same scene.



(a) Graffiti 1-2 (b) Graffiti 1-3 (c) Graffiti 1-4

(d) Wall 1-3 (e) Wall 1-4 (f) Wall 1-5

Fig. 6: Precision-recall diagrams for Graffiti (top row) for the image pairs 1-2, 1-3, and
1-4 and Wall (bottom row) for the image pairs 1-3, 1-4, 1-5.

(a) Boat 1-3 (b) Boat 1-4 (c) Boat 1-5

(d) Bikes 1-2 (e) Bikes 1-4 (f) Bikes 1-6

Fig. 7: Precision-recall diagrams for Boat (top row, image pairs 1-3, 1-4, 1-5) and Bikes
(bottom row, image pairs 1-2, 1-4, and 1-6). The Boat sequence shows scale and rotation
change. The Bikes shows differences in image blur.



(a) Grace 1-2 (b) Grace 1-3 (c) Grace 1-4

(d) Grace 1-2 (e) Grace 1-3 (f) Grace 1-4

Fig. 8: Precision-recall diagrams for Grace with the resolutions 1536�1024 (top) and
3456�2304 (bottom).

(a) Underground 1-2 (b) Underground 1-3 (c) Underground 1-4

(d) Underground 1-2 (e) Underground 1-3 (f) Underground 1-4

Fig. 9: Precision-recall diagrams for Grace with the resolutions 1536�1024 (top) and
3456�2304 (bottom).



(a) Colors 1-2 (b) Colors 1-3 (c) Colors 1-4

(d) Colors 1-2 (e) Colors 1-3 (f) Colors 1-4

Fig. 10: Precision-recall diagrams for Colors with the resolutions 1536�1024 (top) and
3456�2304 (bottom).

(a) There 1-2 (b) There 1-3 (c) There 1-4

(d) There 1-2 (e) There 1-3 (f) There 1-4

Fig. 11: Precision-recall diagrams for There with the resolutions 1536�1024 (top) and
3456�2304 (bottom). For this challenging sequence, none of the descriptors provide a
result for the pair 1-4.



(a) Posters 1-2 (b) Posters 1-3 (c) Posters 1-4

Fig. 12: Precision-recall diagrams for Posters with the resolutions 1536�1024.

Table 4: The results for the descriptors test field.
Input Ranking

Sequence Resolution 1ST 2ND 3RD 4TH 5TH

Graffiti 0:5 MP MROGH LIOP GLOH SIFT A-KAZE
Wall 0:5 MP MROGH GLOH/SIFT LIOP A-KAZE
Boat 0:5 MP MROGH LIOP/GLOH SIFT A-KAZE
Bikes 0:5 MP MROGH LIOP SIFT/GLOH/A-KAZE
Grace 1:5 MP MROGH/LIOP GLOH A-KAZE SIFT
Grace 8:0 MP MROGH/LIOP GLOH SIFT A-KAZE

Underground 1:5 MP MROGH LIOP/GLOH A-KAZE SIFT
Underground 8:0 MP MROGH GLOH LIOP/A-KAZE/SIFT

Colors 1:5 MP MROGH/LIOP SIFT A-KAZE/GLOH
Colors 8:0 MP MROGH LIOP/SIFT GLOH A-KAZE
There 1:5 MP MROGH/LIOP A-KAZE/GLOH SIFT
There 8:0 MP MROGH/LIOP A-KAZE/GLOH SIFT

Posters 1:5 MP LIOP MROGH GLOH SIFT A-KAZE

References

1. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 510–
517 (2012)

2. Alcantarilla, P., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated
features in nonlinear scale spaces. In: British Machine Vision Conference
(BMVC) (2013)

3. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: Eu-
ropean Conference on Computer Vision (ECCV). Lecture Notes in Computer
Science, vol. 3951, pp. 404–417. Springer (2006)

4. BloodAxe: OpenCV Features Comparison. https://github.com/
BloodAxe/OpenCV-Features-Comparison (2014), [Online; accessed
20-February-2015]

5. Cordes, K., Rosenhahn, B., Ostermann, J.: Increasing the accuracy of fea-
ture evaluation benchmarks using differential evolution. In: IEEE Sympo-

https://github.com/BloodAxe/OpenCV-Features-Comparison
https://github.com/BloodAxe/OpenCV-Features-Comparison


sium Series on Computational Intelligence (SSCI) - IEEE Symposium on
Differential Evolution (SDE) (2011)

6. Cordes, K., Rosenhahn, B., Ostermann, J.: High-resolution feature evalua-
tion benchmark. In: Wilson, R. (ed.) 15th International Conference on Com-
puter Analysis of Images and Patterns (CAIP). Lecture Notes in Computer
Science, vol. 8047, pp. 327–334. Springer (2013)

7. Fan, B., Wu, F., Hu, Z.: Aggregating gradient distributions into intensity or-
ders: A novel local image descriptor. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). pp. 2377–2384 (2011)

8. Figat, J., Kornuta, T., Kasprzak, W.: Performance evaluation of binary de-
scriptors of local features. In: Chmielewski, L., Kozera, R., Shin, B.S., Woj-
ciechowski, K. (eds.) Computer Vision and Graphics, Lecture Notes in Com-
puter Science, vol. 8671, pp. 187–194. Springer International Publishing
(2014)

9. Frahm, J.M., Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen,
Y.H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building rome on
a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Euro-
pean Conference on Computer Vision. Lecture Notes in Computer Science
(LNCS), vol. 6314, pp. 368–381. Springer (2010)

10. Hess, R.: An open-source siftlibrary. In: Proceedings of the International
Conference on Multimedia. pp. 1493–1496. MM ’10, ACM, New York, NY,
USA (2010)

11. Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary robust invariant
scalable keypoints. In: IEEE International Conference on Computer Vision
(ICCV). pp. 2548–2555 (2011)

12. Li, Y., Wang, S., Tian, Q., Ding, X.: A survey of recent advances in visual
feature detection. Neurocomputing 149, Part B, 736 – 751 (2015)

13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision (IJCV) 60(2), 91–110 (2004)

14. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaf-
falitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors.
International Journal of Computer Vision (IJCV) 65(1-2), 43–72 (2005)

15. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
27(10), 1615–1630 (2005)

16. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alter-
native to sift or surf. In: IEEE International Conference on Computer Vision
(ICCV). pp. 2564–2571 (2011)

17. Salti, S., Lanza, A., Di Stefano, L.: Keypoints from symmetries by wave
propagation. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 2898–2905 (2013)

18. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet
photo collections. International Journal of Computer Vision (IJCV) 80, 189–
210 (2008)

19. Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature descrip-
tion. In: IEEE International Conference on Computer Vision (ICCV). pp.
603–610 (2011)


	Feature Evaluation with High-Resolution Images

