
International Wind Engineering Conference
IWEC 2014

AIRBORNE SOUND BASED DAMAGE DETECTION FOR WIND TURBINE ROTOR

BLADES USING IMPULSE DETECTION IN FREQUENCY BANDS 
THOMAS KRAUSE, STEPHAN PREIHS, JÖRN OSTERMANN

Institut für Informationsverarbeitung
Leibniz Universität Hannover

Appelstraße 9a, 30167 Hannover, Germany
e-mail: {krause, preihs, ostermann}@tnt.uni-hannover.de

Keywords: Acoustic emission, damage detection, wind turbine rotor blade, airborne sound

Summary: This paper presents a cracking sound detection algorithm for damage detection of
wind turbine rotor blades.

1 ABSTRACT

Composite rotor blades of wind turbines are subjected to high static and dynamic loads. The
load can cause small damages which can accumulate over time to critical structural damage. A
system detecting defects in early stages helps to react fast and avoid critical damage. Such a
method will enable the wind turbine operator to increase safety and minimize the economical
burdens caused by downtime, repairing, replacing and maintenance. Therefore many research
projects try to pave the way to a reliable and practical early damage detection system for wind
turbine rotor blades.
One promising approach is acoustic emission event detection. Acoustic emission stands for
stress waves emitted by a damage process.  While other acoustic emission approaches use
ultrasonic  surface  acceleration  as  input  signals,  we  propose  using  the  airborne  sound  in
audible frequencies. The aim is to detect cracking sounds emitted by the damage process. In
this  paper  we present  an  improved version  of  our  algorithm for  detecting  these  cracking
sounds by using impulse detection in individual frequency bands. The performance with the
new algorithm increased significantly. In the recordings of a 76 day full scale rotor blade
fatigue  test  we  detected  104  cracking  sounds  while  there  were  only  six  false  positive
detections. Compared with the previous algorithm, the amount of detected cracking sounds is
about three times higher and there are significantly less false alarms.

2 INTRODUCTION

Wind turbine rotor blades have to match the criteria of being light weight and large at the
same time. Therefore all modern blades are made of composite materials. During operation
the blades are subjected to high static and dynamic loads. This permanent load can lead to
small damages which accumulate over time to critical structural damage. In situations where
damage occurs  in an important part of a structure, structural health monitoring systems can
be able to improve safety and minimize the costs for maintenance, repairing and replacing.
Therefore  the  damage  has  to  be  detected  in  early  stages  to  react  fast  and  avoid  critical
damage. In modern wind turbines controlling units are already implemented like the blade
pitch control or an emergency shut-off system. These systems might be also triggered by a
structural health monitoring system to avoid critical damage.
There are two certified rotor blade monitoring systems on the market [1] which are able to
detect  ice,  but  these  systems  are  not  capable  of  detecting  damage  in  early stages.  Many
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research results of nondestructive testing methods were published so far. Several approaches
can be used for automatic damage detection of wind turbine rotor blades. An overview can be
found  in  [2]  [3].  For  detecting  damage  automatically,  reliably  and  in  early  stages  many
research projects focus on the acoustic emission event detection approach. The aim of this
approach is to detect components of the stress wave caused by the damage process. For this
sensors mounted on the surface of the blade are used. With this approach small damages can
be detected [2] [3] [4] [5]. The sensors operate in ultrasonic frequencies, therefore the amount
of sensors is relatively high due to the size of modern blades and high internal damping of
composite materials [4] [5].
Using acoustic emission for damage detection in an operating wind turbine is an unsolved
problem. The higher risk of damage from lightning strikes caused by the electrical conductive
wires  is  the  main  problem  which  prevents  testing  an  acoustic  emission  approach  in  an
operating rotor blade. So far there are only few results published using an acoustic emission
system in  an  operating  wind  turbine  rotor  blade.  The  ability  of  detecting  damage  while
operation  could  not  directly been tested  due to  the  lack  of  damage.  Environmental  noise
during operation was observed which has to be taken into account to avoid false detections [6]
[7].
In  contrast  to  existing  approaches,  in  [9]  we  proposed  a  damage  detection  approach  by
identifying cracking sounds in audible frequencies from 20 Hz to 20 kHz using the airborne
sound. The idea is based on the observation of audible cracking sounds during rotor blade
tests [8]. We assume that only up to three sensors are necessary for monitoring the whole rotor
blade due to the relatively low attenuation of the air in such frequencies. In addition, fiber
optic  microphones  can be used for  recording sound inside a  rotor  blade.  Their  cords  are
optical fibers which are non-metal, so they do not increase the risk of damage from lightning
strikes. This makes the approach applicable in an operating rotor blade.

3 CRACKING SOUND MODEL

In [9] we presented the first results of using airborne sound for rotor blade damage detection.
In that paper a model of impulse-like cracking sounds is described. The model was developed
using airborne sound recordings during parts of a certification test of a 55 m rotor blade. The
recordings consisted of one 76 day flapwise fatigue test and four static tests which took about
ten  minutes  each.  The  sound  was  recorded  inside  the  rotor  blade  using  three  electrical
microphones and one fiber optic microphone.
With this  recordings a model of the cracking sound was developed. The model is  further
described by an example cracking sound in the static test recordings with low environmental
noise.  A part  of  the  recording is  displayed using  the  power  spectrogram (Figure  1).  The
cracking sound is displayed in the spectrogram as triangular shaped area. The power in very
low frequencies is noise from the rotor blade test.
The first characteristic of the cracking sound model is the impulse-like increase in power
which can be found at 0.15 s in Figure 1. The maximal power occurs in this time period which
we refer to as first part of the impulse. Subsequently there is an approximately exponential
decrease in power over time. In Figure 1 the power is displayed in decibels, therefore the
decrease  is  approximately linear.  The  power  of  every impulse  is  distributed  over  a  wide
frequency range,  so the impulses are non-tonal.  Depending on the impulse,  the frequency
where maximum power occurs can vary in a wide range. In our recordings the value occurs in
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the range of 150 Hz to 10 kHz. The example impulse has its maximal power at  500 Hz.
Another characteristic of all cracking sounds is a specific decrease in power towards higher
frequencies,  beginning with the frequency where maximal  power occurs.  The decrease  is
linear in decibel with a specific constant slope.

4 DETECTION ALGORITHM

In  [9]  we  also  presented  a  cracking  sound  detection  algorithm  which  is  based  on  the
comparison of the input signal with the cracking sound model. In this paper an improved
detection algorithm is presented, including an impulse detection feature based on individual
frequency bands and a procedure for the extraction of frequency boundaries.
The detection algorithm uses five audio features f1 - f5 to represent the model characteristics.
The features are based on the power spectrum P(k,l) calculated by a windowed short time
fourier  transform.  Here  k  is  the  frequency  index  and  l  the  time  index.  All  features  are
compared with threshold parameters  δ to see if the signal is similar to the cracking sound
model. The principle flow chart of the algorithm is displayed in Figure 2. The power gradient
feature and the bandwidth at which the signal is impulse-like are responsible for the improved
performance of the current algorithm. In the following Subsections all important steps of the
detection algorithm are described.

3

Figure 1: Power spectrogram with cracking sound and minor noise of the rotor blade test.

Figure 2: Flow chart of the detection algorithm.
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a. Power gradient feature

In the previous algorithm, the first feature was the increase in power over all  frequencies
which displayed if the signal is impulse-like. This led to missed impulse-like sounds when at
the same time an impulse and a noise signal with high decrease in power occurred. So we
modified this feature. The power gradient feature used now analyzes if the signal is impulse-
like over a wide frequency range. For this, the increase in power in all frequency bands is
calculated by Equation 1.  The raising time of  the impulse model  is  denoted  by l l.  If  the
increase in power is greater than the threshold gb, the frequency band is defined as impulse-
like. The power gradient feature f1 is the number of all impulse-like frequency bands as shown
in Equation 2. Very low frequencies are left out. These frequencies can provide high power
and are not correlated with the cracking sound. The frequency range reduction is adjusted
with the parameter ks.

g (k ,l )={1 ,  if  P (k ,l )−P (k ,l−ll )>gb

0 ,  else

(1)

f 1 (l )=∑k=k s

k end

g (k , l ) (2)

If  a  significant  number of  bands shows a sudden power increase the  feature  exceeds the
threshold parameter  δ1,min and the signal becomes a candidate for a cracking sound with the
time index lc and is further processed.
The frequency bands where the signal is impulse-like is extracted and used for the features
processed  after  the  power  gradient  feature.  Frequency components  which  are  out  of  the
impulse-like frequency bandwidth are not taken into account. This leads to a better separation
of noise when checking the three features tonality, spectral slope and spectral similarity. The
bandwidth  is  approximated  by  combining  all  bands  where  the  power  increases,  if  the
frequency  gap  between  the  bands  is  smaller  than  a  defined  boundary.  If  the  amount  of
combined impulse-like  frequency bands  is  greater  than  one,  the  band kw with  the  widest
bandwidth  is  taken.  The  boundary  frequencies  indices  kb and  ke are  used  for  further
processing. 

kb≤kw≤ke (3)

b. Noise reduction

In  case  a  power  gradient  according  to  the  model  is  observed,  the  algorithm reduces  the
influence of not impulse-like signals in the power spectrogram by using spectral subtraction.
The  assumption  for  spectral  subtraction  is  a  stationary  signal.  This  assumption  is
approximately valid if a short time period is taken. The signal model specifies that the rise
time of the power is shorter than the decay time. Therefore the subtracting spectrum is taken a
short time period before the beginning of the impulse, at the time lc - lr. The noise reduced
spectrogram Ps is only used for calculating features taken from the first part of the impulse.

Ps (k , lc )=10 log10 [P(k , lc)−P (k ,lc−lr ) ] (4)
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c. Tonality feature

There are three features calculated using the noise reduced power spectrum of the first part of
the impulse. The first feature represents the tonality of the signal. For this the spectral flatness
measure [10] is used. The geometric mean of the power spectrum is divided by the arithmetic
mean as shown in Equation 5.

f 2 (lc )=
(∏k=kb

ke

Ps (k , lc ))
1

k e−kb

∑k=kb

k e

P s (k , lc)

ke−kb

(5)

The result is a value between zero and one. Where zero represents a maximal tonal signal and
one a maximal noise-like signal. The cracking sound model specifies the sound as non-tonal
so the feature value should not be lower than the threshold δ2,min.

d. Spectral slope feature

The second feature, using the noise reduced power spectrum of the first part of the impulse, is
the specific slope in the power spectrum. This feature represents the linear decrease in decibel
towards higher frequencies, beginning at the frequency kp where maximal power occurs. This
frequency has to be taken from the interval kw. The gradient f3 of a simple linear regression is
calculated as an approximation of the signal slope by

f 3( lc)=
∑k=kp

ke

(k−k̄ )(P s(k ,l c)−P s(lc))

∑k=k p

k e

(k− k̄)2
.

(6)

The overbar in Equation 6 means the arithmetic mean using the frequency interval kp to ke.
The upper and lower threshold parameter δ3,max and δ3,min define the allowable deviation from
the characteristic model slope. In Figure 3 the power spectrum of the first part of the cracking
sound is displayed. The frequencies fp and fe are corresponding to the frequency indices kp and
ke.

e. Spectral similarity feature

The third feature, calculated using the noise reduced power spectrum of the first part of the
impulse,  compares the impulse with the model  curve.  This feature represents the specific
linear  decrease  in  decibel  from  the  frequency  with  maximal  power  kp towards  higher
frequencies as well as the noise-like characteristic of the impulse.
The power spectrum of the impulse model curve Pprot is defined by a characteristic exponential
decline  of  power  towards  higher  frequencies.  The  representation  of  the  signal  in  decibel
linearises this decline.
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The feature f4 measures the similarity of the signal spectrum and the model spectrum. The
similarity is displayed in the euclidean distance normalized by the bandwidth of the spectrum
by 

f 4(lc)=
1

ke−k p
√∑k=k p

ke

[Pprot (k )−P s(k ,l c)]
2.

(7)

The threshold parameter δ4,max is the upper limit for a positive detection.

f. Impulse decay feature

The last feature f5  of the algorithm is the decay of the impulse. The model decay defines a
linear decrease in signal power in decibel over time. The feature is calculated using the power
over time in the frequency kp. The time period starts at the time index lc. The length of the
time period is adjusted with the value ld. The decay of the signal is approximated calculating
the gradient of the simple linear regression by

f 5( lc)=
∑l=lc

lc+ld
(l− l̄ )[10log10 (P (k p ,l ))−10log10 (P (k p )) ]

∑l=lc

lc+ld
(l− l̄ )2

.
(8)

Here the overbar symbolizes the arithmetic mean in the interval of l c to lc+ld. The decay of the
example  cracking  sound  and  the  approximated  decay is  shown in  Figure  4.  The  time  t c

corresponding to the time index lc  and td corresponding to ld are marked in the figure. The
upper and lower threshold parameters  δ5,max and  δ5,min define the detection interval for this
feature. In case the five features are detected at a time frame l c the algorithm indicates that a
cracking sound has occurred.

6 6

Figure 3: Spectrum of the first part of the impulse, linear regression curve and model curve.
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5 RESULTS

The improved detection algorithm presented in Section 4 was used to process the rotor blade
stress test recordings described in Section 3. The data of the recordings was manually labeled.
The amount  of  cracking sounds  in  the  flapwise  fatigue  test  is  unknown due to  the  long
recording time.  We built  a  training-set and a  test-set  by splitting all  static  test  recordings
equally and taking one hour of representative fatigue test data for both sets. We assume that
the lower power impulses are less important for the damage detection purpose, so we split up
the impulse signals into two groups, signals with a signal peak to average noise ratio of less
than 30dB were labeled as low power impulses and signals with a ratio of more than 30dB
were marked as high power impulses. The recordings of the optical microphone were used to
get the further described results. The test-set and training-set are identical to the sets used in
the previous publication [9]. 
With the improved detection algorithm there are only slightly better detection results in the
test-set.  A sensitivity1 of 84 % for signals with high power and a sensitivity of 52 % for
cracking sounds with low power are achieved while there are no false positive detections.
Nevertheless there is a significantly better detection performance in the fatigue test recording.
Processing the 76 days fatigue test data provides 104 correctly detected cracking sounds and
only six false positive detections. The amount of correctly detected cracking sounds is three
times higher  compared to  the results  of the previous  algorithm and at  the same time the
amount of false positive detection decrease from 67 to six. We assume that the higher noise in
the fatigue test leads to the better results in this recordings.
No critical structural damage occurred during the rotor blade tests, so in the fatigue test the
cracking sounds happened significantly more often in the beginning of the test, where the
structure adapted to the load.

1The sensitivity is the number of correctly identified impulses divides by all impulses in the set.
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Figure 4: Power over time in frequency with maximal power and linear regression curve.
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6 SUMMARY

In this  paper,  an improved version of an algorithm for detection of impulse-like cracking
sounds in rotor blades of wind turbines is presented.  The proposed algorithm for damage
detection is based on a model of the cracking sound. The model characteristics were displayed
in  the  following  features:  power  gradient,  tonality,  spectral  slope,  spectral  similarity  and
decay.  All  features  are  calculated  and  checked  by  the  algorithm.  The  impulse  detection
displayed in the power gradient feature was modified to measure the increase in power of
frequency bands. With this modification the method is able to separate the decay of tonal
background signals and cracking sound impulses. This provides better detection results in the
76 day recordings of full-scale fatigue test, 104 cracking sounds were detected while there are
only six false positive detections. Compared with the previous version of the algorithm the
amount  of  detected cracking sounds is  about  three  times higher  and the number of  false
alarms are significantly lower.
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