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ABSTRACT: Future tasks in remote sensing require automated and robust analysis meth-
ods for image data from airborne and satellite sensor platforms. The scenes to be observed
exhibit a high degree of complexity. Complexity refers to the large variety of pictorial rep-
resentations of objects with the same semantic meaning and also to the extensive amount
of details of the scenes, i.e. the components which make up a settlement, a rural area,
an industrial plant, a street net etc. In order to handle the problem a new approach is
presented, which uses structural and holistic methods for object recognition and scene
interpretation. The system works on multisensor and multitemporal data. Expectations
about the objects and scene content to be recognized can be formulated using differ-
ent paradigms for knowledge representation. Structural dependencies can be represented
explicitely as a semantic net, simple primitives like lines, edges, patches and complex
primitives like streets and buildings, etc. can be described and extracted by holistic meth-
ods. The system and its components are explained using examples for the recognition of
complex patterns like a purification plant, a fairground or the task of the verification of
land usage.

1 INTRODUCTION

With the rising number of sensors carried on board of planes and satellites and the increas-
ing performance of these sensors new tasks originate, which are handled more efficiently
by remote sensing techniques than by standard procedures. These tasks include data ac-
quisition for geographic information systems (GIS), refinement of GIS data using higher
level of detail, update and verification of existing GIS databases. Presently most of the
analysis is done manually by human experts. There are only few exceptions like data pre-
and post-processing routines. However, in order to reach economic solutions, automated
and robust image analysis techniques are required.

The described tasks belong to the area of pictorial pattern recognition in complex scenes.
Complexity refers to two aspects. First the patterns themselves are complex and it is
difficult to establish a general model for the automated analysis: What is a purification
plant, how do streets in an urban scene look like, how do I recognize flooded land or how
can I differentiate between industrial and suburban areas? The second aspect is that the
scenes themselves are very complex in their details, like fields, streets, residential houses,
buildings, bridges, vehicles, rivers, different types of vegetation appearing in rural areas,
etc. The problems in automated image analysis are manyfold. Some are related to the
large variability of pictorial appearances represented by a single semantic expression, other
problems are due to the uncertainty and imprecision of the data caused by the nature of
the sensors and natural variations in the scene, like weather conditions, seasons, scene
illumination, flight parameters, etc.



A definite optimal solution to the mentioned problems doesn’t exist, but we observe,
that the human expert can perform the requested tasks despite all the obstacles. Therefore
our approach is to observe the human expert and make all the information and methods
available, which he uses as well. This means,

e we apply a multisensor and multitemporal analysis,

e we use prior knowledge, like interpretations from existing GIS databases, knowledge
about scene features from learning sets and expert knowledge

e we apply flexible image analysis strategies and model-based approaches instead of
fixed procedures. That means the knowledge is represented explicitly and system
control is independent of the particular knowledge base and the data under investi-
gation.

In the following chapters a knowledge based approach will be described in more detail,
which we have successfully applied to complex scenes using structural pattern recognition
techniques, holistic methods and expert knowledge, represented by semantic nets.

Various other approaches addressing these problems have been presented in the litera-
ture. The systems SPAM (McKeown et al. 1985), SIGMA (Matsuyama & Hwang 1990)
and MESSIE (Clement et al. 1993) represent the first generation of knowledge based
systems for the interpretation of aerial images. Application of rules for knowledge repre-
sentation is a common method. In the BPI-system (Stilla & Michaelsen 1997) the rule
base is structured in a network describing a part-of-hierarchy of the scene components.
(Mees & Perneel 1998) suggests the distinction of strategy, global and sensor-dependent
knowledge. The knowledge is represented in AND/OR-trees, fuzzy production rules and
attributed prototypes with local image processing operators. In ERNEST (Sagerer &
Niemann 1997) the knowledge base is formulated by a semantic net which describes the
scene objects and their relations. A well defined network syntax facilitates the automatic
reasoning. The MOSES system (Quint 1997) extends the ERNEST approach to extract
man-made objects from aerial images using hints from a map.

2 STRUCTURAL APPROACH
2.1 System structure

Structural pattern recognition is advantageous if objects can be described as a composition
of particular parts interrelated by some typical geometric, radiometric, functional or other
observable feature. This is often true for man-made objects and structures. Figure [l
shows the overall scheme of the image analysis system AIDA which has been developed
for this purpose.
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Figure 1. System components of AIDA.



For input the system uses multisensor and/or multitemporal image data of the scene
to be analysed, a knowledge base which is relevant for understanding the investigated
region and supplementary knowledge from a GIS. AIDA uses the knowledge base to set up
hypotheses about the scene objects expected to be found and to derive constraints about
the object properties appearing in the images. The output of the system is a symbolic
description of the scene content and a segmented image describing the recognized objects
and their geometric relations.

2.2 Knowledge representation and system control

For the explicit representation of expert knowledge a semantic net has been chosen. An
example net is shown in Figure fl. Two classes of nodes can be distinguished: the concepts
are generic models of the object and the instances are realizations of their corresponding
concepts in the observed scene. Thus, the prior knowledge is formulated by concepts.
During interpretation a symbolic scene description is generated consisting of instances.
The object properties are described by attributes attached to the nodes. The relations
between the objects are modelled by edges in the semantic net. The decomposition of
objects is represented by the part-of edge. Thus the detection of an object can be reduced
to the detection of its parts. The transformation of an abstract description into its more
concrete representation in the data is modelled by the con-of relation. This relation allows
to structure the knowledge in different conceptual layers like for example the scene layer, a
material and geometry layer and a sensor layer, shown in Figure B. Topological relations,
like close-to provide information about the kind and the properties of neighbouring objects.
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Figure 2. Semantic net representing the the generic scene model of a purification plant and its
relation to the sensor image.

To use the knowledge represented in the semantic net, control knowledge is required
that states how and in which order scene analysis has to proceed. The control knowledge
is represented explicitly by a set of rules. An inference engine determines the sequence of
rule executions. Whenever ambiguous interpretations occur they are treated as competing
alternatives and stored in the leaf nodes of a search tree. Each alternative is judged by
comparing the measured object properties with the expected ones. The judgement calculus
models imprecision by fuzzy sets and considers uncertainties by distinguishing the degrees
of necessity and possibility. The judgements of attributes and nodes are fused to one



numerical figure of merit for the whole interpretation state. The best judged alternative
is selected for further investigation. Using a mixed top-down and bottom-up strategy
the system generates model-driven hypotheses for scene objects and constraints about the
object properties to appear in the sensor images. During the bottom up phase features
are extracted from the image data, which are compared against the expected values and
are used to reject, accept or refine hypotheses and constraints.

For an object recognition only those features are relevant which on one hand can be
observed by the sensor and on the other hand give a cue for the presence of the object of
interest. Hence the knowledge base contains only the necessary and visible object classes
and properties. The network language described above is used to represent the prior
knowledge by a semantic net. In Figure B a part of a generic model for the interpretation
of remote sensing data for a scene containing a purification plant is shown. It is divided
into the 3D scene layer and the 2D sensor layer. The 3D scene domain is split into
a (semantic) scene layer and a physical layer, describing the observable geometric and
material properties. If a GIS is available and applicable an additional GIS layer can be
defined, representing the scene specific knowledge extracted from the GIS. The 2D image
domain contains the sensor layers adapted to the current sensors and the data layer.

For the objects of the 2D image domain general knowledge about the sensors and meth-
ods for the extraction and grouping of image primitives like lines and regions is needed.
The primitives are extracted by image processing algorithms and stored in the semantic
net as instances of concepts like SubStripe or SubRectangle in Figure BJ. The sensor layer
can be adapted to the current sensor type like optical camera, SAR, range sensor, etc.
All information of the 2D image domain is specified in the image coordinate system. As
each transformation between image and scene domain depends on the sensor type and its
projection parameters, the transformations are modelled explicitly in the semantic net by
the concept Sensor and its specializations for the different sensor types.

2.3 Multisensor and multitemporal analysis

The automatic analysis of multisensor data requires fusion of the data sets. The presented
concept eases the integration and simultaneous interpretation of images from multiple
sensors by strict separation of the sensor independent knowledge of the 3D scene domain
from the sensor dependent knowledge in the 2D image domain. New sensor types can
be introduced by simply defining a new specialization of the Sensor node with the corre-
sponding geometrical and radiometrical transformations. According to the images to be
interpreted the different sensor layers (SAR, IR, Optical, Range) are activated.

Temporal changes can be formulated in a state transition graph where the nodes repre-
sent the temporal states and the edges model the state transitions. To integrate the graph
into a semantic net the states are represented by concept nodes which are connected by a
temporal relation. For each temporal relation a transition probability can be defined. As
states can either be stable or transient the corresponding state transitions differ in their
transition time which can also be specified for the temporal relation. For the exploitation
of the temporal knowledge a timestamp is attached to each node of the semantic net. In
contrast to hierarchical relations like part-of or con-of the start and end node of temporal
relations may be identical - forming a loop - which means that the state stays unchanged
over time.

An industrial fairground is an example for a complex structure which is only detectable
by a multitemporal image interpretation. Using a single image the fairground would be
classified as an industrial area consisting of a number of halls. The different states of
a fairground are represented by the concepts Fairldle, FairConstruction, FairActive, and
FairDismantling. The states representing the actual fair like the construction-state, the
active-state and the dismantling-state are transient compared to the Fairldle-state which
is valid most of the year. Therefore transition times of four to eight days are defined for
the corresponding temporal relations and the node Fairldle is looped back to itself. The
analysis starts with the first image, looking for an Industrial Area. In the given example
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Figure 3. Semantic net for the detection of an industrial fairground using a state transition graph.

the system searches for at least three halls and one parking lot. If the Industrial Area can
be instantiated completely the system tries to refine the interpretation by exchanging the
Industrial Area by a more special concept. There are four possible specializations (Fairldle
to FairDismantling) and the search tree splits into four leaf nodes. Each hypothesis is
tested in the image data. A construction or dismantling phase is characterized by trucks
parking close to the halls which deliver the equipment for the booths. Hence the system
searches for bright rectangles placed around the halls. An active fair can be recognized by
parking lots filled with cars and - if the image accuracy is sufficient - by persons walking on
the fairground. If one of the four states can be verified the temporal inference is activated.
The system switches to the next image in the sequence and generates hypotheses for
the successor state. According to the elapsed time and considering the transition times all
possible successors are determined. Having found hints for all obligatory states a complete
instance of Industrial Fairground can be generated and the interpretation goal is reached.

3 HOLISTIC OPERATORS

Any type of structural pattern recognition method is based on features, so called prim-
itives, which, in a holistic approach, are directly extracted from the image data. Often
these features consist of edges, line-elements, patches, etc. Since the knowledge interpre-
tation process is expensive from the computing point of view, the efficiency of the overall
approach can be significantly improved by using preprocessed primitive sets which match
the particular image analysis task. In the following three methods are described in more
detail. One method extracts closed regions by detecting planar areas in the gradient image
of distance maps (laserscans). This method is useful for detecting buildings. A second
method extracts patches with homogeneous radiometric properties. It can be used to find
regions, which are homogeneous in their surface properties, like homogeneous vegetation,
water, settlement areas, homogeneous geological areas, etc. A third method extracts line-



like structures of predefined profiles as they are typical for transportation nets like roads,
rails or canals.

Figure 4. Investigated area - (a) aerial image, res. 0.5m/pix, (b) laserscan, res. 1m/pix and Holistic
operator results - (¢) Building detection, (d) Texture classification.

3.1 Detection of planar objects

Man made objects can be detected by processing the laserscan height information, shown
in Figure fb). Neighbouring regions with local height differences below a given threshold
are connected and a unique label is assigned. Labelled regions smaller than a preset
minimum surface size, as they appear for example in forest areas, are reassigned to the
surrounding region, if the regions are too large they are set to the background. This
segmentation process delivers a label image containing unique labels for each object, as it
is shown for buildings in Figure fc).

3.2 Texture classification

Regions with homogeneous surface properties can be described efficiently by texture mod-
els based on 2D stochastic processes. One possible implementation of a stochastic model
for supervised texture segmentation is described by (Gimel'farb & Zalesny 1993). Super-
vised means that a teaching sample containing the texture classes expected to be found
in the image data is analysed regarding first and second order stochastical features. The
first order model describing the probability density of the data is determined from the
luminance histogram of all elements of each training class. In general the occurrence of
a certain luminance value is statistically dependent on the values of its neighbours. The
second order texture model considers pairwise pixel interactions of neighbouring pixels,
called cliques, and describes their local interactions by Gibbs random fields. Only the




statistical significant clique types are selected for definition of a neighbourhood system
k. The texture model considers four probabilities: The luminance probability P; for each
class (first order), the probability P, of each clique belonging to the same class, the prob-
ability Ps of luminance difference for each clique within a region, and the probability Py
of luminance difference for each clique at the regions’ border. If more than one image
band is available the interdependence of the bands is also evaluated. The probabilities P;
specify the potential V, of a clique k.

Gibbs random fields describe the joint probability of a segmentation of a neighbourhood
system x« The segmentation has to maximize the joint probability for the whole image,
which is an iterative process due to the neighbourhood relations. A result image of the
texture segmentation is shown in Figure fid). The texture model of this example contains
the four classes forest, meadow, streets and settlement.

3.3  Road detection

Traffic nets like roads are characterized by typical luminance profiles, smoothness and
continuity along the main direction. An algorithm for the extraction of traffic nets has
been developed using three processing steps. In the first step a gradient and a direction
image are calculated. In areas which match user-defined parameters all road candidates are
extended using an A*-search-algorithm. The parameters contain the road width specified
as interval (min, max value), the brightness of the road area, the gradient profile, shown
in Figure Pa) and fb) and the minimum road length. The last step of the algorithm is a
vectorization of the resulting line segments.
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Figure 5. (a),(b) Vertical profiles of the road gradient and (c) alternative results of the A*-
algorithm.
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4 HYBRID APPROACH

The system AIDA described in Section P follows a purely structural approach, which
requires that hypotheses of the top semantic level always have to be verified by holistic
operators on the bottom image level. Especially in image segmentation tasks it is useful
and more efficient to directly employ specialized holistic operators for region extraction,
like those mentioned in Section B, rather than to use a structural pattern recognition
scheme leading down to the very detailed components of the region. For example it is not
necessary to detect each individual house in order to recognize a settlement area. As a
consequence of such requirements a more general redesign has been made with the name
geoAIDA permitting the use of holistic operators on all levels of the semantic net.

4.1 Structure of geoAIDA

Nodes and Links Similar to AIDA the domain specific knowledge in geoAIDA is coded
as semantic net with concept nodes and edges describing the relations between the nodes.
According to the requirements of remote image analysis the semantic net is structured
hierarchically, based on the idea that a region can be separated into more detailed regions
which form true subsets. For example the concept house in Figure [] is a component



of the more abstract region settlement. Therefore the most important edge type is the
part_of edge. In contrast to AIDA the strictly hierarchical structure of the concept net
has been extended to all other relations as well. Experience has shown that this request
imposes no limitations and eases system control considerably. Another essential difference
to other systems using semantic nets is that geoAIDA transfers the complete edge func-
tionality into two classes of operators attached to the net nodes (TopDown and BottomUp).

Analysis The concept net represents the knowledge about the objects expected to be
found in the scene. The result net (instance net) depends on the investigated scene. The
analysis process is able to exploit scene knowledge and to generate hypotheses (TopDown-
analysis) as well as to suitably rate extracted objects and to perform a grouping of them
(BottomUp-analysis). The system control is independent of the problem, generates and
deletes instances and controls the execution and parameterization of all necessary opera-
tors. Besides a structural scene interpretation approach as used by most of the semantic
net based systems (Niemann et al. 1990) (Liedtke et al. 1997) an additional holistic ap-
proach was integrated. Holistic operations allow to connect the input data sources on all
interpretational levels. Holistic instantiation enables instantiation of a concept without
looking at it’s structural components. The user can utilize these features to define an
analysis depth and to limit the analysis process to certain parts of the concept net.

Operators Each node of the concept has two slots for connection of operators for
TopDown- and BottomUp-analysis. As it is possible to use arbitrary operators which were
designed for very different purposes, a dynamic interface description for linkage of opera-
tors to the concept net was realized. This mechanism allows to use any existing segmen-
tation or evaluation operator to be connected to the system.

The general task of the TopDown operator is to split a region into subareas, to classify
and to assign a meaning to these areas and further to provide figures of certainty for this
segmentation process. A holistic operator can be attached to any concept node to achieve
a direct and fast classification or object extraction as described in Sections B.1 and B.2.
Depending on the interpretation depth determined by the user the subregions created by
a segmentation are further investigated. An alternative procedure would be to recognize
an object by its structure if there is no holistic operator available. Also a combination
of both strategies is possible: the holistic operator might be used to initially segment a
region geometrically, afterwards a structural analysis of the subregions is performed.

The BottomUp operator evaluates the attributes of the child instance nodes. Based on
this evaluation the instance nodes are grouped and rated. Alternative group arrangements
are compared and only the best combination is propagated. During the grouping process
a region can be split into subregions if this increases the overall rating and probability of
a certain segmentation. In the last step the newly formed instances are valued.

4.2 Application land use

The interpretation process is illustrated on the verification of land use. Input data is an
excerpt, see Figure ffa), of the gray-value aerial image with a resolution of 0,5m/pixel shown
in Figure fla) and the corresponding part, Figure fb), of the laserscan with a resolution of
1m/pixel shown in Figure f]b). The laserscan data can be used for a building detection,
see Section B.1|, Figure id) and Figure fic). The knowledge base for this example is shown
in Figure [7.

The initial analysis step generates a hypothetical instance scene. This instance links
the input images to the system and produces an instance region which splits the whole
scene into subregions using information of street positions, see Figure Bc). The holistic
operator of the concept region queries the database of a GIS for the street coordinates
and generates a matching label image for the investigated scene.



The semantic net is designed to determine the type of land usage for regions. All
instances generated by the concept region have to be processed further to acquire this

type.
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Figure 6. a) ortho photo, b) laserscan, c) initial GIS segmentation, d) building extraction from
laser scan data e) texture segmentation of ortho photo, f) final scene interpretation by geoAIDA (1:
forest, 2: industry, 3: forest, 4: unknown, 5: settlement).
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Figure 7. Semantic concept net.

According to the concept net each region can be hypothetically instantiated as inhabited
area, agriculture or ambiguous, if the region contains areas with both types of land usage.
This step utilizes the holistic building detection described in Section BIl. In the following
an instance settlement as well as industry is created for each instance inhabited area by
instantiation of all the necessary structural components (house, garden, building, parking
areas). In parallel all hypothetical instances agriculture are further processed using the
results of the holistic texture classification shown in Figure fle) and Figure @b).

Now that the TopDown-analysis has reached the leaves of the semantic net, an ex-
tensive set of instances for each observed region is available which is submitted to the
BottomUp-analysis for grouping, evaluation, deletion, etc. Competing interpretations of
the same region are differentiated according to the probabilities gained during the TopDown-
progression. The BottomUp-analysis propagates back to the top node scene and delivers
the scene interpretation result shown in Figure fif). geoAIDA classifies region one and three
as forest, two as industry and five as settlement.



5 CONCLUSION

This contribution presents an approach for knowledge-based image interpretation of com-
plex scenes. Like ERNEST (Niemann et al. T990) AIDA uses concept nets to model expert
knowledge about the expected scene content. These concepts are turned into a symbolic
scene description when detected and verified during the analysis process. AIDA features
operation on multisensor data, usage of GIS information as an underlying interpretation
model for data verification and processing of multitemporal input data for very sophisti-
cated monitoring tasks (moorland, industrial fairs). The ideas of AIDA were transferred
into the new system geoAIDA which adds region-based and holistic analysis to it’s purely
structural working predecessor. geoAIDA is a promising production tool for image analysis
applications in remote sensing. One major application which is presently pursued is the
verification of geographic information systems from orthophotos.
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