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Abstract

Recent variational stereo approaches suffer from
at least one of the following drawbacks: Either
they use anisotropic disparity-drivensmoothness
term that ignores the directional information of the
disparity �eld, or they applyanisotropic image-
drivenregularisation that suffers from oversegmen-
tation artifacts. As a remedy, we present a novel
anisotropic disparity-drivenapproach for stereo vi-
sion. It is designed as a highly adaptive anisotropic
diffusion-reaction equation that incorporates a dif-
fusion process which has been used successfully
for image denoising and inpainting. Its directional
adaptation allows to better control the smoothing
w.r.t. the local structure of the disparity �eld.
Experiments that compare our model to a recent
isotropic variational method and a probabilistic
graph cut approach demonstrate the superior quality
of our approach. Moreover, a multigrid algorithm
allows for moderate run times that do not depend
on the disparity range.

1 Introduction

Stereo vision is an important and challenging part of
computer vision research. Although �rst attempts
go back to Marr and Poggio [17] in 1976, qualita-
tively good results are still hard to obtain. In the
usual binocular case, one is given two images of
the same scene, captured from two different views,
which we denote by 'left' and 'right', respectively.
In order to recover the missing depth information of
the scene, one has to solve acorrespondence prob-
lem: For each pixel in the left image one has to de-
termine the correspondingdisparity, i.e., the change
of its position w.r.t. the right image.

There are different methods to compute the dis-
parity, which can basically be divided into four
classes: (i)Feature-basedapproaches [9], which
match characteristic points in the images, e.g., cor-
ners, (ii)area-basedapproaches [20], matching pix-
els if patches around them exhibit a certain simi-
larity, (iii) phase-basedapproaches [7], that use the
phase information in the Fourier domain, and �nally
(iv) energy-basedapproaches [2, 12, 13, 14, 16, 20,
21], which �nd the disparity by minimising an en-
ergy functional that penalises deviations from data
and smoothness assumptions. The latter class can
be further divided intoprobabilisticandvariational
approaches. The �rst type [12, 13, 20] models im-
ages and disparity as Markov random �elds and
tries to �nd the most probable disparity, given the
two images. This comes down to the minimisation
of a discrete energy which is usually done by graph
cuts (GC) [13], belief propagation (BP) [12] or dy-
namic programming (DP) [14] algorithms. These
methods are quite successful as they usually impose
strict smoothness assumptions, modelling a piece-
wise constant disparity. However, Li and Zucker
[15] have shown that such approaches may have
severe drawbacks if the assumption of a piecewise
constant disparity is violated. This can be the case
if the depth is varying smoothly, for instance in the
presence of curved or slanted surfaces. Moreover,
probabilistic approaches suffer from their discrete
nature, since they only assign integer disparity val-
ues to the pixels.

These restrictions do not apply to the second type
of energy-based methods,variational approaches.
Here, the disparity is computed by the minimisa-
tion of a continuous energy functional which can be
done by a gradient descent method. This requires
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to compute the steady-state of a partial differential
equation (PDE), which is ofdiffusion-reactiontype.
Variational approaches go back to the work of Horn
and Schunck [10], where they were �rst success-
fully introduced in optical �ow computations. For
stereo, they were used, among others, in the work
of Slesarevaet al. [21], where the authors adapted
the very accurate optical �ow method of [3] to the
weakly calibrated case. By exploiting the known
geometry of the two views, they restrict the search
for correspondences along epipolar lines. In this
work we restrict ourselves to the scenario where the
two images have beenrecti�ed beforehand and dis-
placements only occur in horizontal direction. Thus
the disparity boils down to a pixelwise scalar value.
A recent variational stereo method for the recti�ed
case is proposed in [2], which additionally incorpo-
rates segmentation ideas and occlusion handling to
further improve results at disparity boundaries.

One important design aspect of variational meth-
ods is the choice of theregulariser modelling the
smoothness assumptions. Recent variational stereo
approaches either use isotropic disparity-driven reg-
ularisers [2, 21], which adapt the smoothing of the
disparity map w.r.t. the magnitude of the dispar-
ity gradient, or anisotropic image-driven regularis-
ers that try to preserve edges in accordance with the
image data [1, 16]. For most cases, anisotropic pro-
cesses have shown to be superior to their isotropic
counterparts, as they offer a higher accuracy at
image edges and thin structures. Disparity-driven
methods generally have an advantage over image-
driven ones that tend to give oversegmented results.
However, a method that combines these two advan-
tages, has not been proposed so far in a stereo con-
text. To �ll the void in existing smoothing strate-
gies, this paper introduces an anisotropic disparity-
driven stereo method, which takes into account
directional information of the disparity �eld and
thus allows to distinguish between smoothing along
and across disparity edges. In [23], Weickert and
Schn̈orr present a theoretical framework for the de-
sign of regularisers in the context of optical �ow
computation, which also includes an anisotropic
�ow-driven smoothness term. We will show that it
is not possible to directly adopt this regularisation
in the stereo case, as the resulting diffusion process
remains isotropic. As a remedy, we propose a dif-
ferent strategy: Instead of deriving a suitable energy
functional, we will directly model a highly adaptive

anisotropic diffusion process within the diffusion-
reaction equation. Since a corresponding energy
formulation is no longer required, we can design
more powerful smoothing strategies that are based
on nonlinear anisotropic diffusion �lters. These �l-
ters have already shown their usefulness in the con-
text of image denoising [22] and PDE-based in-
painting [8]. In particular, our method will exhibit
a distinct behaviour at corners, edges and homoge-
neous regions.

Our paper is organised as follows: Section 2 in-
troduces basic concepts of variational stereo. After
discussing existing types of regularisers we present
our new anisotropic method in Section 3. Section 4
shortly describes the solution of the arising PDE,
while Section 5 shows experiments that compare
our new anisotropic method with an isotropic one,
as well as a GC method. Section 6 concludes the
paper with a summary and gives an outlook to pos-
sible future work.

2 Variational Stereo

2.1 Basic Structure

Assume we are given the recti�ed image pair
f l ; f r : 
 ! R, denoting the left and the right
view, respectively. Here
 � R2 is a rectangular
image domain. We further assume that the images
are presmoothed by a convolution with a Gaussian
kernel of standard deviation� pre . The unknown
horizontal disparity componentu : 
 ! R is found
by minimising an energy functional of the form

E (u) =
Z



[M (f l ; f r ; u) + � V (r u)] dx ; (1)

wherex := ( x; y )> 2 
 and r := ( @x ; @y )>

denotes the spatial gradient operator. Thedata
term M (f l ; f r ; u) models how well the disparity
u matches the given dataf l and f r . In general,
this is done by imposing one or several constancy
assumptions on image properties. Thesmoothness
term or regulariser V (r u) enforces the disparity
to be smoothly varying in space by penalising large
gradients ofu. Its in�uence on the overall energy is
steered by a smoothness weight� > 0.

We �nd a minimiseru of the energy functional
(1) via a gradient descent method by introducing
an arti�cial evolution parametert. In other words,
we are looking for the steady state solution of the



diffusion-reactionequation

ut =
�
@x Vu x + @y Vu y

�
�

1
�

@u M ; (2)

for t ! 1 , with homogeneous Neumann boundary
conditions@n u = 0 on @
 . Here the subscripts of
u denote partial derivatives andn denotes the nor-
mal vector of the image boundary@
 . The term be-
tween brackets on the righthand side comprises the
diffusion part which results from the smoothness
term of the energy functional. The last term con-
stitutes the reaction part of the equation and stems
from the data term.

For the choice of the data term of our method we
will follow the approach in [21] and use a combi-
nation of the brightness and the gradient constancy
assumption:

M (f l ; f r ; u) = 	 M

�
jf r (x + u) � f l (x )j2

+  jr f r (x + u) � r f l (x )j2
�

: (3)

In the above expressionu := ( u; 0)> , and	 M (s2)
is a differentiable and increasing function that is
convex ins. The brightness constancy constraint
models the classical assumption that the grey value
of a pixel does not change during its displacement
[10]. The gradient constancy assumption on the
other hand renders the approach more robust under
varying illumination conditions, a common prob-
lem in real-world images. Its contribution to the
overall data term is steered by a parameter > 0.
Note that we refrain from linearising the data term
to allow for a correct estimation of large dispar-
ities. As a robust penaliser function we choose
	 M (s2) :=

p
s2 + " 2 , where" > 0 is a small

regularisation parameter. This results in a modi�ed
L 1 penalisation, which helps us cope with outliers
caused by image noise or occlusions. The contri-
bution of the data term (3) to equation (2) will be
denoted bym(f l ; f r ; u) := @u M and can be writ-
ten as follows:

m(f l ; f r ; u) = 	 0
M

�
f 2

z +  (f 2
xz + f 2

yz )
�

�(f x f z +  (f xx f xz + f xy f yz )) : (4)

In this equation we made, in accordance with [21],
use of the following abbreviations:

f � := @� f r (x + u) ; (5)

f z := f r (x + u) � f l (x ) ; (6)

f � z := @� f r (x + u) � @� f l (x ) ; (7)

where the variablez is used to emphasise the use of
temporal differences in contrast to temporal deriva-
tives.

2.2 Regularisation

We will now give a short overview of existing
spatial regularisers for recti�ed variational stereo.
We will follow the taxonomy of Weickert and
Schn̈orr [23], which gives a systematic classi�ca-
tion of convex smoothness terms for optical �ow
computation. Based on their connection with multi-
channel diffusion �ltering, this classi�cation en-
compasses data-driven and �ow-driven as well as
isotropic and anisotropic regularisers.

I. Isotropic image-driven regularisation.
This type of regularisation inhibits smoothing of the
disparity �eld at image edges. A recent work in this
area was published by Kim and Sohn [11].

II. Anisotropic image-driven regularisation.
This class of regularisers mainly became popular
through the works of Mansouriet al. [16] and Al-
varezet al. [1]. The smoothness term makes use
of a diffusion tensorD (r f l ; r f r ) 2 R2� 2 which,
compared to isotropic processes, can include addi-
tional directional information. This gives rise to
more degrees of freedom in the adaptation of the
smoothing process to the underlying image struc-
ture. The biggest drawback of image driven regu-
larisation lies in the fact that not every image edge
necessarily matches a disparity edge. Especially in
the presence of textures the resulting disparity �eld
can suffer from oversegmentation.

III. Isotropic disparity-driven regularisation.
A remedy for oversegmented solutions can come
from the use of disparity-driven regularisers, which
inhibit smoothing at edges of the evolving dispar-
ity u. Indeed, most recent successful variational
approaches [2, 21] use a regulariser of this type.
The smoothness term takes on the formVID (r u) =
	 V

�
jr uj2

�
for a non-quadratic penaliser	 V (s2)

which is convex ins. The corresponding diffusion-
reaction equation is then given by

ut = div
�
	 0

V

�
jr uj2

�
r u

�

�
1
�

m(f l ; f r ; u) : (8)

Because the scalar-valueddiffusivity	 0
V

�
jr uj2

�
is

a function of the unknownu, this PDE is nonlinear,



contrary to the linear PDEs that result from image-
driven methods. A prominent example of isotropic
disparity-driven regularisation isTotal Variation
[19] regularisation, used in [2, 21], where	 V =p

s2 + " 2 .

3 PDE-Based Anisotropic Disparity-
Driven Stereo

In [23] an anisotropic �ow-driven regulariser for
motion estimation was derived for the �rst time, but
as we have seen, equivalent anisotropic disparity-
driven ideas for variational stereo are still missing.
However, such a smoothing strategy would have the
favourable property that it allows smoothing along
evolving disparity discontinuities, but not across.
This can lead to the enhancement of meaningful
edges, thus improving the estimation of discontinu-
ities in the disparity �eld, without the problem of
oversegmentation.

3.1 Adapting Anisotropic Flow-Driven
Regularisation

Adapting the design ideas of Weickert and Schnörr
[23] directly to our stereo setting results in the fol-
lowing regulariser:VAD (r u) = tr 	 V (J ), where
	 V is an increasing convex function and the ar-
gumentJ := r ur u> is a symmetric, positive
semide�nite2 � 2 matrix. If J has the orthonormal
eigenvectorsv 1 and v 2 with corresponding non-
negative eigenvalues� 1 and� 2 , then	 V (J ) is de-
�ned as the matrix with the eigenvectorsv 1 andv 2

and the eigenvalues	 V (� 1) and	 V (� 2):

J =
2X

i =1

� i v i v >
i

) 	( J ) :=
2X

i =1

	 V (� i ) v i v >
i : (9)

Employing the regulariserVAD (r u) leads to the
diffusion-reaction equation

ut = div ( D (J ) r u) �
1
�

m(f l ; f r ; u) ; (10)

with the diffusion tensorD (J ) := 	 0
V (J ). For

anisotropic �ow-driven optical �ow, the argument
J includes a coupling between the two �ow com-
ponents of the optical �ow. In this manner the

desired anisotropic behaviour is ensured because
the eigenvectors ofJ are in general not parallel
to the gradients of both �ow components. In the
stereo case, however, the eigenvalues and eigenvec-
tors of J are trivial: � 1 = jr uj2 ; � 2 = 0 and
v 1 = 1

jr u j r u; v 2 = 1
jr u j r u? , wherer u? :=

(� uy ; ux )> is a vector orthogonal tor u. With this
the diffusion part of equation (10) comes down to

div ( D (J )r u) (11)

= div
�

	 0
V (r ur u> )r u

�
(12)

(9)
= div

��
	 0

V (jr uj2)
jr uj2

r ur u>

+
	 0

V (0)
jr uj2

r u? (r u? )>
�
r u

�
(13)

( � )
= div

�
	 0

V (jr uj2)
jr uj2

jr uj2r u + 0
�

(14)

= div
�
	 0

V (jr uj2)r u
�

; (15)

where(� ) makes use of the facts thatr u> r u =
jr uj2 and (r u? )> r u = 0 . We conclude
that for the stereo case, the use of the regulariser
VAD (r u) yields the already presented disparity-
driven isotropic behaviour of equation (8).

3.2 True Anisotropic Disparity-Driven
Stereo

To �nally model a highly adaptive anisotropic
smoothing process for recti�ed stereo we will re-
frain from the design of a regulariserVAD (r u). In
fact, we will directly model in the diffusion part of
the diffusion-reaction equation (10).

In order to obtain truly anisotropic behaviour
we need a more sophisticated structure detector
thanJ . Inspired by the anisotropic diffusion �lter
from [22], we consider thestructure tensorJ � [6]
for stereo:

J � := J � (r u� ) := K � �
�

r u� r u>
�

�
; (16)

whereu� := K � � u, K � denotes a Gaussian ker-
nel of standard deviation� and� is the convolution
operator. We see thatJ � extendsJ in two ways:
(i) It regularises the disparityu by a Gaussian con-
volution of standard deviation� and (ii) integrates



neighbourhood information by convolving the ten-
sor entries with a Gaussian kernel of standard devi-
ation� . Regularisation of the unknownu by Gaus-
sian convolution with anoise scale� was �rst pro-
posed in the context of nonlinear diffusion to reduce
staircaising artifacts and problems with noise, c.f.
[5]. Despite the fact thatr u� is a useful edge de-
tector, the problem still remains that it is sensitive
under noise for small� , while an increased� can
lead to undesired cancellation effects. This can be
overcome by an additional convolution of the tensor
entries with anintegration scale� .

The structure tensorJ � is a symmetric, positive
semide�nite matrix with two orthonormal eigen-
vectorsw 1 ; w 2 , which give the directions of the
local disparity structure. The corresponding non-
negative eigenvalues, w.l.o.g.� 1 � � 2 � 0, give
the average contrast along these directions. So we
propose the following diffusion-reaction equation
which makes use of the structural information con-
tained inJ � :

ut = div ( D (J � ) r u) �
1
�

m(f l ; f r ; u) ; (17)

with the diffusion tensor

D (J � ) := 	 0
V (J � ) :=

2X

i =1

	 0
V (� i ) w i w >

i :

(18)
We further propose to make use of the Perona-Malik
[18] diffusivity with a contrast parameter~" > 0:

	 0
V (s2) :=

1
1 + s2 =~" 2

: (19)

This diffusivity is known to make backward diffu-
sion possible and thereby enhance edges even more.
With this choice we can now show that our method
exhibits the described anisotropic behaviour:

– In �at regions:
� 1 � � 2 � 0 ) 	 0

V (� 1) � 1; 	 0
V (� 2) � 1,

which leads to homogeneous smoothing in both
directions.

– At astraight edge inw2-direction:
� 1 � � 2 � 0 ) 	 0

V (� 1) � 0; 	 0
V (� 2) � 1,

which leads to anisotropic smoothing in edge
direction, but not across.

– At corners:
� 1 � � 2 � 0 ) 	 0

V (� 1) � 0; 	 0
V (� 2) � 0,

which prevents smoothing.

4 Numerical Solution of the PDE

What needs to be mentioned is how to solve the
diffusion-reaction equation (17) in its steady-state
whereut = 0 . As is proposed in [3], we use a
coarse-to-�ne warping approach. This multiscale
approach is achieved by using a downsampling of
the image pair by a factor� 2 (0; 1), yielding
[L; : : : ; 0] warping level, depending on the image
size and� . On each level, we compute disparity
increments via a linearised approach that is applica-
ble because the increments are usually small. This
strategy allows to handle large disparities correctly.
Moreover, due to the PDE-based nature of our ap-
proach, we can speed up the computation by fol-
lowing the idea of [4] and using a nonlinear multi-
grid scheme to solve the problem at each warping
level. On each grid level, we apply a Gauss-Seidel
solver with alternating line relaxation to the result-
ing linear system of equations. Occurring spatial
derivatives of the image data are approximated by
central �nite differences of fourth order and spatial
derivatives of the disparity by second order approx-
imations.

5 Experiments

We evaluate our presented PDE-based
anisotropic disparity-driven stereo method
against the graph cuts approach of Kolmogorov
and Zabih [13] (available for download at
www.cs.cornell.edu/˜rdz/graphcuts.html )
and the isotropic disparity-driven method of Sle-
sarevaet al. [21], adapted to the recti�ed stereo
case. This is achieved by using the trivial funda-
mental matrix, which yields a horizontal epipolar
direction. Furthermore, we made use of the men-
tioned multigrid solver [4], i.e., our approach just
replaces the isotropic disparity-driven regularisa-
tion of [21] by our new anisotropic disparity-driven
method. However, we will see that this may give
drastic improvements.

To reduce the amount of parameters to be esti-
mated for our method, we choose some standard
settings for our experiments: A coarsening factor
� = 0 :95 for the multiscale approaches and regu-
larisation parameters" = 0 :001, ~" = 0 :1. For our
anisotropic method using the structure tensor, we
estimate a value for� and set� := 2 � .



For our �rst experiment, we tested the three ap-
proaches on a grey value version of the'Plas-
tic' image pair from the Middlebury stereo page
(vision.middlebury.edu/stereo ), which is
shown together with the grey value coded ground
truth disparity in the top row of Figure 1. To make
a quantitative analysis of results possible, we em-
ploy two different error measures. They re�ect how
well a disparity estimateu = ( u i ) matches the
given ground truthugt =

�
ugt

i

�
, for images with

i = 1 ; : : : ; N pixels. The �rst measure is theav-
erage absolute disparity error(AADE) of [21] and
the second one is thebad pixel error(BPE) of [20],
which gives the percentage of pixels which deviate
more than a threshold� d > 0 from the ground truth.
These measures are de�ned as follows:

AADE
�
u ; u gt �

=
1

N

NX

i =1

�
�
�u i � u gt

i

�
�
� ; (20)

BPE
�
u ; u gt �

=
100

N

NX

i =1

T
� �

�
�u i � u gt

i

�
�
� > � d

�
; (21)

whereT (b) = 1 if b = true , and0 else. As pro-
posed in [20], we set� d = 1 .

The achieved results and colour-coded error
maps (green� error < � d , yellow � � d � error
< 3� d and red� error � 3� d ) for the three meth-
ods can be found in the middle and lower row of
Figure 1. In Table 1, we collected the correspond-
ing error measures and computation times, also for
the'Teddy' pair that we will present in Figure 2 and
other Middlebury pairs. For the latter we do not
give disparity estimates due to space limitations.

Concerning the results for the'Plastic' pair, c.f.,
Figure 1 and Table 1, one sees that due to the piece-
wise smooth ground truth the variational approach
of Slesarevaet al. and also our PDE-based method
easily outperforms the GC approach. The men-
tioned drawback of the strict regulariser used in
the GC approach becomes obvious: The smoothly
varying disparity of the folder in the foreground is
not recovered well, which one impressively sees
in the corresponding error maps. In addition it
becomes clear that our new anisotropic disparity-
driven method brings quite some bene�ts compared
to its isotropic counterpart. This can mainly be seen
in the much better estimation of the background
in the upper right part and the folder in the fore-
ground. The improvements are most striking in re-
gions where there are strong edges in the disparity

Table 1: Error measures (AADE, BPE) and com-
putation times for experiments of Figures 1, 2 and
others. Experiments were conducted on a standard
PC (3.2 GHz Intel Pentium 4, 256 MB RAM). For
'Teddy' only the non-occluded regions were eval-
uated in the error measures, for the rest only the
reliable regions.

Pair GC Isotropic Our
Max. disp. [13] [21] method

Plastic AADE 7:60 1:21 1:37
66 BPE 57:13 24:37 19:45

Time [s] 190 :25 9:51 23:82

Teddy AADE 1:49 0:64 0:61
59 BPE 13:46 10:37 9:22

Time [s] 106 :08 10:39 21:61

Laundry AADE 6:19 3:22 2:95
78 BPE 35:48 37:18 34:25

Time [s] 133 :59 11:34 21:69

Bowling1 AADE 4:79 4:63 3:36
77 BPE 53:41 30:35 24:41

Time [s] 204 :91 9:40 20:26

�eld, as can be expected for our anisotropic method.
Regarding the BPE, our method gives an improve-
ment of about20%compared to the method of Sle-
sarevaet al. and even65% compared to the GC
approach. If we evaluate the given computation
times, we see that the more complex anisotropic
method leads to an average increase of about100%
compared to the isotropic method with multigrid.
However, the GC approach is still far behind, espe-
cially for pairs with large disparities. For the'Plas-
tic' pair the increase in computation time is about
800% compared to our approach and even2000%
compared to the method of Slesarevaet al., which
impressively shows the ef�ciency of the employed
multigrid solver.

As a second experiment, we compared our
results for'Teddy', c.f., Figure 2 and Table 1, with
the of�cial ranking of the Middlebury page for
� d = 0 :5. With the isotropic method of Slesarevaet
al. one currently obtains rank11 out of 46, which
we can improve to rank8 with our new anisotropic
method. As can be seen in the error maps of Figure
2, the main improvements of our method lie in the
better estimation of the �oor in the lower part of
the image. Small improvements are also visible
at the right side of the teddy and at the back of
the stuffed animal on the �oor. However, another
insight of this experiment is that some very recent



Figure 1: First row, from left to right: Left image of'Plastic' pair (423 � 370 pixels). Right image.
Ground truth disparity magnitude, non-reliable pixels are marked in black.Second row, from left to
right: Disparity magnitude for GC approach [13] (� = 10 , automatically estimated). Same for recti�ed
stereo version of Slesarevaet al. [21] (� = 7 ; � pre = 0 :35;  = 60 ; L = 93). Same for our method
(� = 90 ; � pre = 0 :45;  = 100; � = 4 :5; � = 9 ; L = 93). Third row, from left to right: Error map for
GC approach. Same for recti�ed stereo version of Slesarevaet al. [21]. Same for our method.

probabilistic approaches are still able to outperform
variational or PDE-based approaches, even on test
pairs with piecewise smooth ground truth. This
can be explained by the more sophisticated model
assumptions made in these approaches, like explicit
occlusion handling [13].

As a third experiment we reconstructed
the 'Portal' scene (available for download at
cmp.felk.cvut.cz/˜cechj/GCS ), using the
estimated disparities as hight�elds. The scene is
part of a larger set of recti�ed real-world scenes,
collected by Jan Cech and Radim Sara. This
speci�c scene, c.f., top row of Figure 3, shows the
portal of a church with many details around the

door and on the arch. The estimated disparity mag-
nitudes for the GC approach and for our method are
also given. They were used in the reconstructions
depicted in the bottom row of Figure 3. One clearly
sees that the reconstruction with the GC approach
is not satisfactory. All smoothly slanted surfaces
are estimated in a stair-like manner, originating
from the strict regularisation. One furthermore
experiences unpleasant outliers at the right border.
Our method solves these problems: We get a very
accurate reconstruction, with sharp discontinuities
and lots of �ne details, e.g., the frets at the top of the
portal and even the door handle are estimated well.
Concerning the computation time, the GC approach



Figure 2:First row, from left to right: Left image of'Teddy' pair (450� 375pixels). Disparity magnitude
for recti�ed stereo version of Slesarevaet al. [21] (� = 5 :5; � pre = 0 :5;  = 7 :5; L = 94). Same for
our method (� = 20 ; � pre = 0 :45;  = 5 :5; � = 2 :5; � = 5 ; L = 94). Second row, from left to right:
Ground truth disparity magnitude, non-reliable pixels are marked in black.Error map for recti�ed stereo
version of Slesarevaet al. [21]. Same for our method.

needed199:96 s for the disparity estimation using
35 discrete depth levels, whereas our method only
needed33:27 s.

6 Conclusions and Outlook

In this paper, we �lled the gap in existing smooth-
ing strategies for stereo vision. We have �rst shown
that a straight-forward adaptation of anisotropic
ideas from optical �ow computations [23] does not
work for stereo, as the smoothing process remains
isotropic. As a remedy, we presented a novel PDE-
based anisotropic disparity-driven method, based
on anisotropic diffusion �lters. Our experiments
clearly show that such a method can help to con-
siderably improve the results compared to previ-
ous isotropic approaches, such as [21]. This again
demonstrates that it pays off to replace existing
isotropic approaches by the additional degrees of
freedom that come from anisotropy. Comparing to
very recent probabilistic approaches, we have seen
that our method is indeed competitive as we are
ranking among the best20%of all featured methods
in the of�cial Middlebury ranking. Furthermore, the

application of highly ef�cient multigrid schemes [4]
is still possible, resulting in moderate run times in
the order of a few seconds for standard test images.
This is in general much less than the computation
times for the tested GC approach [13].

It is evident that our method still leaves space for
some improvements. If one takes a closer look at
the error maps in Figures 1 and 2, one realizes that
errors mostly occur at occluded regions, e.g., at the
left border of the folder in Figure 1 or at the left
border of the house in Figure 2. In [2], the authors
present a variational approach with explicit occlu-
sion handling, which gives favourable results at oc-
clusions. Incorporating such concepts, we aim to
develop a PDE-based approach of even better qual-
ity.
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Figure 3:First row, from left to right: Left image of the'Portal' image pair (greyscale version, cropped
and resized to435 � 615 pixels to remove a black border stemming from the recti�cation). Right image.
Disparity magnitude for GC approach [13] (� = 6 , automatically estimated). Same for our method (� =
40; � pre = 0 :5;  = 3 ; � = 2 :5; � = 5 ; L = 97). Second row, from left to right: Reconstruction using
GC approach. Same with texture mapping. Reconstruction using our method. Same with texture mapping.
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