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Summary . Human motion capturing can be regarded as an optimization problem
where one searches for the pose that minimizes a previously de�ned error function
basedon someimage features. Most approachesfor solving this problem useiterativ e
methods lik e gradient descent approaches. They work quite well as long as they do
not get distracted by local optima. We intro duce a novel approach for global opti-
mization that is suitable for the tasks as they occur during human motion capturing.
We call the method interacting simulated annealing since it is based on an inter-
acting particle system that converges to the global optim um similar to simulated
annealing. We provide a detailed mathematical discussionthat includes convergence
results and annealing properties. Moreover, we give two examples that demonstrate
possible applications of the algorithm, namely a global optimization problem and
a multi-view human motion capturing task including segmentation, prediction, and
prior knowledge. A quantativ e error analysis also indicates the performance and the
robustness of the interacting simulated annealing algorithm.

13.1 In tro duction

13.1.1 Motiv ation

Optimization problems arise in many applications of computer vision. In poseesti-
mation, e.g. [28], and human motion capturing, e.g. [31], functions are minimized at
various processingsteps. For example, the marker-less motion capture system [26]
minimizes in a �rst step an energy function for the segmentation. In a secondstep,
correspondencesbetweenthe segmented image and a 3D model are established. The
optimal poseis then estimated by minimizing the error given by the correspondences.
These optimization problems also occur, for instance, in model �tting [17, 31]. The
problems are mostly solved by iterativ e methods as gradient descent approaches.
The methods work very well as long as the starting point is near the global opti-
mum, however, they get easily stuck in a local optim um. In order to deal with it,
several random selectedstarting points are used and the best solution is selectedin
the hope that at least one of them is near enough to the global optim um, cf. [26].
Although it improves the results in many cases,it does not ensure that the global
optim um is found.
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In this chapter, we intro duce a global optimization method basedon an interacting
particle system that overcomesthe dilemma of local optima and that is suitable for
the optimization problems as they arise in human motion capturing. In contrast to
many other optimization algorithms, a distribution instead of a single value is ap-
proximated by a particle representation similar to particle �lters [10]. This property
is bene�cial, particularly , for tracking where the right parameters are not always
exact at the global optim um depending on the image features that are used.

13.1.2 Related W ork

A popular global optimization method inspired by statistical mechanics is known as
simulated annealing [14, 18]. Similar to our approach, a function V � 0 interpreted
as energy is minimized by meansof an unnormalized Boltzmann-Gibbs measure that
is de�ned in terms of V and an inversetemperature � > 0 by

g(dx) = exp (� � V (x)) � (dx), (13.1)

where � is the Lebesguemeasure.This measurehas the property that the probabilit y
massconcentrates at the global minim um of V as � ! 1 .
The key idea behind simulated annealing is taking a random walk through the
search spacewhile � is successively increased. The probabilit y of accepting a new
value in the spaceis given by the Boltzmann-Gibbs distribution. While values with
lessenergy than the current value are acceptedwith probabilit y one, the probabilit y
that values with higher energy are accepted decreasesas � increases.Other related
approaches are fast simulated annealing [30] using a Cauchy-Lorentz distribution
and generalized simulated annealing [32] basedon Tsallis statistics.
Interacting particle systems [19] approximate a distribution of interest by a �nite
number of weighted random variables X ( i ) called particles. Provided that the weights
� ( i ) are normalized such that

P
� ( i ) = 1, the set of weighted particles determines

a random probabilit y measuresby

nX

i =1

� ( i ) � X ( i ) . (13.2)

Depending on the weighting function and the distribution of the particles, the mea-
sure converges to a distribution � as n tends to in�nit y. When the particles are
identically independently distributed according to � and uniformly weighted, i.e.
� ( i ) = 1=n, the convergencefollows directly from the law of large numbers [3].
Interacting particle systems are mostly known in computer vision as particle �l-
ter [10] where they are applied for solving non-linear, non-Gaussian �ltering prob-
lems. However, these systems also apply for trapping analysis, evolutionary algo-
rithms, statistics [19], and optimization as we demonstrate in this chapter. They
usually consist of two steps as illustrated in Figure 13.1. During a selection step,
the particles are weighted according to a weighting function and then resampled
with respect to their weights, where particles with a great weight generate more
o�spring than particles with lower weight. In a secondstep, the particles mutate or
are di�used.
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Fig. 13.1. Operation of an interacting particle system. After weighting the particles
(black circles), the particles are resampled and di�used (gray circles).

13.1.3 In teraction and Annealing

Simulated annealing approachesare designedfor global optimization, i.e. for search-
ing the global optim um in the entire search space. Since they are not capable of
focusing the search on someregions of interest in dependencyon the previous visited
values, they are not suitable for tasks in human motion capturing. Our approach,
in contrast, is based on an interacting particle system that usesBoltzmann-Gibbs
measures(13.1) similar to simulated annealing. This combination ensuresnot only
the annealing property as we will show, but also exploits the distribution of the par-
ticles in the spaceas measure for the uncertainty in an estimate. The latter allows
an automatic adaption of the search on regions of interest during the optimization
process.The principle of the annealing e�ect is illustrated in Figure 13.2.
A �rst attempt to fuse interaction and annealing strategies for human motion cap-
turing has becomeknown as annealedparticle �lter [9]. Even though the heuristic is
not basedon a mathematical background, it already indicates the potential of such
combination. Indeed, the annealed particle �lter can be regarded as a special case
of interacting simulated annealing where the particles are predicted for each frame
by a stochastic process,seeSection 13.3.1.

13.1.4 Outline

The interacting annealing algorithm is intro duced in Section 13.3.1 and its asymp-
totic behavior is discussedin Section 13.3.2.The given convergenceresults are based
on Feynman-Kac models [19] which are outlined in Section 13.2. Since a general
treatment including proofs is out of the scope of this intro duction, we refer the in-
terested reader to [11] or [19]. While our approach is evaluated for a standard global
optimization problem in Section 13.4.1,Section 13.4.2demonstrates the performance
of interacting simulated annealing in a complete marker-lesshuman motion capture
system that includes segmentation, poseprediction and prior knowledge.
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Fig. 13.2. Illustration of the annealing e�ect with three runs. Due to annealing,
the particles migrate towards the global maximum without getting stuck in the local
maximum.

13.1.5 Notations

We always regard E as a subspaceof Rd , and let B(E ) denote its Borel � -algebra.
B (E ) denotes the set of bounded measurable functions, � x is the Dirac measure
concentrated in x 2 E , k � k2 is the Euclidean norm, and k � k1 is the well-known
supremum norm. Let f 2 B (E ), � be a measureon E , and let K be a Mark ov kernel
on E 1 . We write

h�; f i =
Z

E
f (x) � (dx), h�; K i (B ) =

Z

E
K (x; B ) � (dx) for B 2 B(E ).

Furthermore, U[0; 1] denotes the uniform distribution on the interval [0; 1] and

osc(' ) := sup
x;y 2 E

fj ' (x) � ' (y)jg : (13.3)

is an upper bound for the oscillations of f .

13.2 Feynman-Kac Mo del

Let (X t ) t 2 N0 be an E -valued Mark ov process with family of transition kernels
(K t ) t 2 N0 and initial distribution � 0 . We denote by P� 0 the distribution of the Mark ov
process,i.e. for t 2 N0 ,

P� 0 (d(x0 ; x1 ; : : : ; x t )) = K t � 1(x t � 1; dx t ) : : : K 0(x0 ; dx1) � 0(dx0),

1 A Mark ov kernel is a function K : E � B(E ) ! [0; 1 ] such that K (�; B ) is
B(E )-measurable 8B and K (x; �) is a probabilit y measure 8x. An example of a
Mark ov kernel is given in Equation (13.12). For more details on probabilit y theory
and Mark ov kernels, we refer to [3].
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and by E � 0 [�] the expectation with respect to P� 0 . The sequenceof distributions
(� t ) t 2 N0 on E de�ned for any ' 2 B (E ) and t 2 N0 as

h� t ; ' i :=
h
 t ; ' i
h
 t ; 1i

, h
 t ; ' i := E � 0

"

' (X t ) exp

 

�
t � 1X

s=0

� s V (X s )

!#

,

is called the Feynman-Kac model associated with the pair (exp(� � t V ); K t ).
The Feynman-Kac model as de�ned above satis�es the recursion relation

� t +1 = h	 t (� t ); K t i , (13.4)

where the Boltzmann-Gibbs transformation 	 t is de�ned by

	 t (� t ) (dyt ) =
E � 0

�
exp

�
�

P t � 1
s=0 � s V (X s )

��

E � 0

�
exp

�
�

P t
s=0 � s V (X s )

�� exp (� � t Vt (yt )) � t (dyt ).

The particle approximation of the 
o w (13.4) dependson a chosenfamily of Mark ov
transition kernels (K t;� t ) t 2 N0 satisfying the compatibilit y condition

h	 t (� t ) ; K t i := h� t ; K t;� t i .

A family (K t;� t ) t 2 N0 of kernels is not uniquely determined by these conditions.
As in [19, Chapter 2.5.3], we choose

K t;� t = St;� t K t , (13.5)

where

St;� t (x t ; dyt ) = � t exp(� � t Vt (x t )) � x t (dyt )

+ (1 � � t exp(� � t Vt (x t )) ) 	 t (� t ) (dyt ), (13.6)

with � t � 0 and � t kexp(� � t V )k1 � 1. The parameters � t may depend on the
current distribution � t .

13.3 In teracting Simulated Annealing

Similar to simulated annealing, one can de�ne an annealing scheme 0 � � 0 � � 1 �
: : : � � t in order to search for the global minim um of an energy function V . Under
someconditions that will be stated in Section 13.3.2, the 
o w of the Feynman-Kac
distribution becomesconcentrated in the region of global minima of V as t goes to
in�nit y. Since it is not possible to sample from the distribution directly , the 
o w is
approximated by a particle set as it is done by a particle �lter. We call the algorithm
for the 
o w approximation interacting simulated annealing (I SA).

13.3.1 Algorithm

The particle approximation for the Feynman-Kac model is completely described
by the Equation (13.5). The particle system is initialized by n identically , inde-
pendently distributed random variables X ( i )

0 with common law � 0 determining the
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random probabilit y measure � n
0 :=

P n
i =1 �

X ( i )
0

=n. Since K t;� t can be regarded as

the composition of a pair of selection and mutation Mark ov kernels, we split the
transitions into the following two steps

� n
t

S election� � � � � � � � ! �� n
t

M utation� � � � � � � � ! � n
t +1 ,

where

� n
t :=

1
n

nX

i =1

�
X ( i )

t
, �� n

t :=
1
n

nX

i =1

� �X ( i )
t

.

During the selection step each particle X ( i )
t evolves according to the Mark ov tran-

sition kernel St;� n
t

(X ( i )
t ; �). That means X ( i )

t is accepted with probabilit y

� t exp(� � t V (X ( i )
t )) ; (13.7)

and we set �X ( i )
t = X ( i )

t . Otherwise, �X ( i )
t is randomly selectedwith distribution

nX

i =1

exp(� � t V (X ( i )
t ))

P n
j =1 exp(� � t V (X ( j )

t ))
�

X ( i )
t

.

The mutation step consists in letting each selectedparticle �X ( i )
t evolve according to

the Mark ov transition kernel K t ( �X ( i )
t ; �).

Algorithm 6 Interacting Simulated Annealing Algorithm
Requires: parameters (� t ) t 2 N0 , number of particles n, initial distribution � 0 , energy
function V , annealing scheme (� t ) t 2 N0 and transitions (K t ) t 2 N 0

1. Initialization
� Sample x ( i )

0 from � 0 for all i
2. Selection

� Set � ( i )  exp(� � t V (x ( i )
t )) for all i

� For i from 1 to n:
Sample � from U[0; 1]
If � � � t � ( i ) then
? Set �x ( i )

t  x ( i )
t

Else
? Set �x ( i )

t  x ( j )
t with probabilit y � ( j )

P n
k =1 � ( k )

3. Mutation
� Sample x ( i )

t +1 from K t ( �x ( i )
t ; �) for all i and go to step 2

There are several ways to choosethe parameter � t of the selection kernel (13.6) that
de�nes the resampling procedure of the algorithm, cf. [19]. If

� t := 0 8t, (13.8)

the selection can be done by multinomial resampling. Provided that 2

2 The inequalit y satis�es the condition � t kexp(� � t V )k1 � 1 for Equation (13.6).
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n � sup
t

(exp(� t osc(V )) ,

another selection kernel is given by

� t (� t ) :=
1

n h� t ; exp(� � t V )i
. (13.9)

In this casethe expression � t � ( i ) in Algorithm 6 is replaced by � ( i ) =
P n

k =1 � ( k ) . A
third kernel is determined by

� t (� t ) :=
1

inf f y 2 R : � t (f x 2 E : exp(� � t V (x)) > yg) = 0g
, (13.10)

yielding the expression� ( i ) =max1� k � n � ( k ) instead of � t � ( i ) .
Pierre del Moral showed in [19, Chapter 9.4] that for any t 2 N0 and ' 2 B (E ) the
sequenceof random variables

p
n(h� n

t ; ' i � h� t ; ' i )

convergesin law to a Gaussian random variable W when the selection kernel (13.6)
is used to approximate the 
o w (13.4). Moreover, it turns out that when (13.9) is
chosen, the variance of W is strictly smaller than in the casewith � t = 0.
We remark that the annealed particle �lter [9] relies on interacting simulated an-
nealing with � t = 0. The operation of the method is illustrated by

� n
t

P r ediction� � � � � � � � ! �̂ n
t +1

I S A� � � � � � � � ! � n
t +1 .

The I SA is initialized by the predicted particles X̂ ( i )
t +1 and performs M times the

selection and mutation steps. Afterw ards the particles X ( i )
t +1 are obtained by an

additional selection. This shows that the annealed particle �lter uses a simulated
annealing principle to locate the global minim um of a function V at each time step.

13.3.2 Con vergence

This section discussesthe asymptotic behavior of the interacting simulated annealing
algorithm. For this purp ose,we intro duce some de�nitions in accordancewith [19]
and [15].

De�nition 1. A kernel K on E is called mixing if there exists a constant 0 < " < 1
such that

K (x1 ; �) � " K (x2 ; �) 8x1 , x2 2 E . (13.11)

The condition can typically only be established when E � Rd is a bounded subset,
which is the casein many applications lik e human motion capturing. For example
the (bounded) Gaussian distribution on E

K (x; B ) :=
1
Z

Z

B
exp

�
�

1
2

(x � y)T � � 1 (x � y)
�

dy, (13.12)

where Z :=
R

E exp(� 1
2 (x � y)T � � 1 (x � y)) dy, is mixing if and only if E is bounded.

Moreover, a Gaussian with a high variance satis�es the mixing condition with a
larger " than a Gaussian with lower variance.
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De�nition 2. The Dobrushin contraction coe�cient of a kernel K on E is de�ned
by

� (K ) := sup
x 1 ;x 2 2 E

sup
B 2B ( E )

jK (x1 ; B ) � K (x2 ; B )j . (13.13)

Furthermore, � (K ) 2 [0; 1] and � (K 1K 2) � � (K 1) � (K 2).

When the kernel M is a composition of several mixing Mark ov kernels, i.e. M :=
K sK s+1 : : : K t , and each kernel K k satis�es the mixing condition for some " k , the
Dobrushin contraction coe�cien t can be estimated by � (M ) �

Q t
k = s (1 � " k ).

The asymptotic behavior of the interacting simulated annealing algorithm is a�ected
by the convergenceof the 
o w of the Feynman-Kac distribution (13.4) to the region
of global minima of V as t tends to in�nit y and by the convergenceof the particle
approximation to the Feynman-Kac distribution at each time step t as the number
of particles n tends to in�nit y.

Con vergence of the 
o w

We supposethat K t = K is a Mark ov kernel satisfying the mixing condition (13.11)
for an " 2 (0; 1) and osc(V ) < 1 . A time mesh is de�ned by

t(n) := n(1 + bc(" )c) c(" ) := (1 � ln( "=2))="2 for n 2 N0 . (13.14)

Let 0 � � 0 � � 1 : : : be an annealing schemesuch that � t = � t ( n +1) is constant in the
interval (t(n); t (n + 1)]. Furthermore, we denote by �� t the Feynman-Kac distribution
after the selection step, i.e. �� t = 	 t (� t ). According to [19, Proposition 6.3.2], we have

Theorem 1. Let b 2 (0; 1) and � t ( n +1) = (n + 1)b. Then for each � > 0

lim
n !1

�� t ( n ) (V � V? + � ) = 0,

where V? = supf v � 0; V � v a:e:g.

The rate of convergenceis d=n(1 � b) where d is increasing with respect to b and c(" )
but doesnot depend on n as given in [19, Theorem 6.3.1]. This theorem establishes
that the 
o w of the Feynman-Kac distribution �� t becomesconcentrated in the region
of global minima as t ! + 1 .

Con vergence of the particle appro ximation

Del Moral established the following convergencetheorem [19, Theorem 7.4.4].

Theorem 2. For any ' 2 B (E ),

E � 0 [jh� n
t +1 ; ' i � h� t +1 ; ' ij ] �

2 osc(' )
p

n

 

1 +
tX

s=0

r s � (M s )

!

,

where

r s := exp

 

osc(V )
tX

r = s

� r

!

,

M s := K sK s+1 : : : K t ,

for 0 � s � t .
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Assuming that the kernels K s satisfy the mixing condition with " s , we get a rough
estimate for the number of particles

n �
4 osc(' )2

� 2

 

1 +
tX

s=0

(

exp

 

osc(V )
tX

r = s

� r

!
tY

k = s

(1 � " k )

)! 2

(13.15)

neededto achieve a mean error lessthan a given � > 0.

Optimal transition kernel

Fig. 13.3. Impact of the mixing condition satis�ed for " s = " . Left: Parameter
c(" ) of the time mesh (13.14). Righ t: Rough estimate for the number of particles
neededto achieve a mean error lessthan � = 0:1.

The mixing condition is not only essential for the convergenceresult of the 
o w as
stated in Theorem 1 but also in
uences the time mesh by the parameter " . In view
of Equation (13.14), kernelswith " closeto 1 are preferable, e.g. Gaussiankernels on
a bounded set with a very high variance. The right hand side of (13.15) can also be
minimized if Mark ov kernelsK s are chosensuch that the mixing condition is satis�ed
for a " s closeto 1, as shown in Figure 13.3. However, we have to consider two facts.
First, the inequalit y in Theorem 2 provides an upper bound of the accumulated error
of the particle approximation up to time t + 1. It is clear that the accumulation of
the error is reduced when the particles are highly di�used, but it also means that
the information carried by the particles from the previous time steps is mostly lost
by the mutation. Secondly, we cannot sample from the measure �� t directly , instead
we approximate it by n particles. Now the following problem arises.The massof the
measure concentrates on a small region of E on one hand and, on the other hand,
the particles are spread over E if " is large. As a result we get a degeneratedsystem
where the weights of most of the particles are zero and thus the global minima are
estimated inaccurately, particularly for small n. If we choose a kernel with small "
in contrast, the convergencerate of the 
o w is very slow. Since neither of them is
suitable in practice, we suggesta dynamic variance schemeinstead of a �xed kernel
K .
It can implemented by GaussiankernelsK t with covariance matrices � t proportional
to the sample covariance after resampling. That is, for a constant c > 0,
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� t :=
c

n � 1

nX

i =1

(x ( i )
t � � t ) � (x ( i )

t � � t )T
� , � t :=

1
n

nX

i =1

x ( i )
t , (13.16)

where (( x) � )k = max(xk ; � ) for a � > 0. The value � ensuresthat the variance does
not becomezero. The elements o� the diagonal are usually set to zero, in order to
reduce computation time.

Optimal parameters

The computation cost of the interacting simulated annealing algorithm with n par-
ticles and T annealing runs is O(nT ), where

nT := n � T . (13.17)

While more particles give a better particle approximation of the Feynman-Kac dis-
tribution, the 
o w becomesmore concentrated in the region of global minima as
the number of annealing runs increases.Therefore, �nding the optimal values is a
trade-o� between the convergenceof the 
o w and the convergenceof the particle
approximation provided that nT is �xed.
Another important parameter of the algorithm is the annealing scheme.The scheme
given in Theorem 1 ensuresconvergencefor any energy function V | even for the
worst one in the senseof optimization | as long as osc(V ) < 1 but is too slow for
most applications, as it is the casefor simulated annealing. In our experiments the
schemes

� t = ln( t + b) for someb > 1 (logarithmic ); (13.18)

� t = (t + 1)b for someb 2 (0; 1) (polynomial ) (13.19)

performed well. Note that in contrast to the time mesh (13.14) the schemesare not
anymore constant on a time interval.
Even though a complete evaluation of the various parameters is out of the scope of
this intro duction, the examples given in the following section demonstrate settings
that perform well, in particular for human motion capturing.

13.4 Examples

13.4.1 Global Optimization

The Ackley function [2, 1]

f (x) = � 20 exp

0

@� 0:2

vu
u
t 1

d

dX

i =1

x2
i

1

A � exp

 
1
d

dX

i =1

cos(2� x i )

!

+ 20+ e

is a widely used multimo dal test function for global optimization algorithms. As
one can see from Figure 13.4, the function has a global minim um at (0; 0) that
is surrounded by several local minima. The problem consists of �nding the global
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Fig. 13.4. Ackley function. Unique global minim um at (0; 0) with several local
minima around it.

minim um in a bounded subspaceE � Rd with an error less than a given � > 0
where the initial distribution is the uniform distribution on E .
In our experiments, the maximal number of time steps were limited by 999, and
we set E = [� 4; 4] � [� 4; 4] and � = 10� 3 . The interacting simulated annealing
algorithm was stopped when the Euclidean distance between the global minim um
and its estimate was less than � or when the limit of time steps was exceeded.All
simulations were repeated 50 times and the average number of time steps needed
by I SA was used for evaluating the performance of the algorithm. Depending on
the chosenselection kernel (13.8), (13.9), and (13.10), we write I SA S 1, I SAS 2, and
I SAS 3, respectively.

Fig. 13.5. Averagetime steps neededto �nd global minim um with error lessthan
10� 3 with respect to the parameters b and c.

Using a polynomial annealing scheme (13.19), we evaluated the average time steps
needed by the I SAS 1 with 50 particles to �nd the global minim um of the Ackley
function. The results with respect to the parameter of the annealing scheme, b 2
[0:1; 0:999], and the parameter of the dynamic variance scheme, c 2 [0:1; 3], are
given in Figure 13.5. The algorithm performed best with a fast increasing annealing
scheme, i.e. b > 0:9, and with c in the range 0:5 � 1:0. The plots in Figure 13.5
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also reveal that the annealing scheme has greater impact on the performance than
the factor c. When the annealing scheme increasesslowly, i.e. b < 0:2, the global
minim um was actually not located within the given limit for all 50 simulations.

Ackley Ackley with noise

I SAS 1 I SAS 2 I SAS 3 I SAS 1 I SAS 2 I SAS 3

b 0.993 0.987 0.984 0.25 0.35 0.27
c 0.8 0.7 0.7 0.7 0.7 0.9
t 14.34 15.14 14.58 7.36 7.54 7.5

Table 13.1. Parameters b and c with lowest average time t for di�eren t selection
kernels.

The best results with parameters b and c for I SA S 1, I SAS 2, and I SAS 3 are listed in
Table 13.1. The optimal parameters for the three selection kernels are quite similar
and the di�erences of the average time steps are marginal.

Fig. 13.6. Left: Average time steps neededto �nd global minim um with respect
to number of particles. Righ t: Computation cost.

In a secondexperiment, we �xed the parameters b and c, where we used the values
from Table 13.1, and varied the number of particles in the range 4 � 200 with step
size 2. The results for I SAS 1 are shown in Figure 13.6. While the average of time
stepsdeclinesrapidly for n � 20, it is hardly reduced for n � 40. Hence,n t and thus
the computation cost are lowest in the range 20 � 40. This shows that a minim um
number of particles are required to achieve a successrate of 100%, i.e., the limit
was not exceededfor all simulations. In this example, the successrate was 100%
for n � 10. Furthermore, it indicates that the average of time steps is signi�can tly
higher for n lessthan the optimal number of particles. The results for I SA S 1, I SAS 2,
and I SAS 3 are quite similar. The best results are listed in Table 13.2.
The abilit y of dealing with noisy energy functions is one of the strength of I SA
as we will demonstrate. This property is very usefull for applications where the
measurement of the energy of a particle is distorted by noise. On the left hand side
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Ackley Ackley with noise
I SAS 1 I SAS 2 I SAS 3 I SAS 1 I SAS 2 I SAS 3

n 30 30 28 50 50 26
t 22.4 20.3 21.54 7.36 7.54 12.54
n t 672 609 603.12 368 377 326.04

Table 13.2. Number of particles with lowest averagecomputation cost for di�eren t
selection kernels.

of Figure 13.7, the Ackley function is distorted by Gaussian noise with standard
deviation 0:5, i.e.,

f W (x) := max f 0; f (x) + W g, W � N (0; 0:52).

As one can see,the noise deforms the shape of the function and changesthe region
of global minima. In our experiments, the I SA was stopped when the true global
minim um at (0; 0) was found with an accuracy of � = 0:01.
For evaluating the parameters b and c, we set n = 50. As shown on the right
hand side of Figure 13.7, the best results were obtained by annealing schemeswith
b 2 [0:22; 0:26] and c 2 [0:6; 0:9]. In contrast to the undistorted Ackley function,
annealing schemesthat increaseslowly performed better than the fast one. Indeed,
the successrate dropped below 100%for b � 0:5. The reasonis obvious from the left
hand sideof Figure 13.7.Due to the noise,the particles are more easily distracted and
a fast annealing schemediminishes the possibility of escapingfrom the local minima.
The optimal parameters for the dynamic variance schemeare hardly a�ected by the
noise.

Fig. 13.7. Left: Ackley function distorted by Gaussian noise with standard devi-
ation 0:5. Righ t: Averagetime steps neededto �nd global minim um with error less
than 10� 2 with respect to the parameters b and c.

The best parameters for I SA S 1 , I SAS 2, and I SAS 3 are listed in the Tables 13.1
and 13.2. Except for I SA S 3, the optimal number of particles is higher than it is the
casefor the simulations without noise. The minimal number of particles to achieve
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a successrate of 100% also increased, e.g. 28 for I SA S 1 . We remark that I SAS 3

required the least number of particles for a complete successrate, namely 4 for the
undistorted energy function and 22 in the noisy case.
We �nish this section by illustrating two examplesof energy function where the dy-
namic variance schemesmight not be suitable. On the left hand side of Figure 13.8,
an energy function with shape similar to the Ackley function is drawn. The dynamic
variance schemesperform well for this type of function with an unique global mini-
mum with several local minima around it. Due to the scheme, the search focuseson
the region near the global minim um after sometime steps. The secondfunction, see
Figure 8(b), has several, widely separated global minima yielding a high variance
of the particles even in the casethat the particles are near to the global minima.
Moreover, when the region of global minima is regarded as a sum of Dirac measures,
the mean is not essentially a global minim um. In the last example shown on the
right hand side of Figure 13.8, the global minim um is a small peak far away from
a broad basin with a local minim um. When all particles fall into the basin, the dy-
namic variance schemesfocus the search on the region near the local minim um and
it takes a long time to discover the global minim um.

(a) (b) (c)

Fig. 13.8. Di�eren t casesof energy functions. (a) Optimal for dynamic variance
schemes.An unique global minim um with several local minima around it. (b) Several
global minima that are widely separated.This yields a high variance even in the case
that the particles are near to the global minima. (c) The global minim um is a small
peak far away from a broad basin. When all particles fall into the basin, the dynamic
variance schemesfocus the search on the basin.

In most optimization problems arising in the �eld of computer vision, however, the
�rst caseoccurs where the dynamic variance schemesperform well. One application
is human motion capturing which we will discussin the next section.

13.4.2 Human Motion Capture

In our secondexperiment, we apply the interacting simulated annealing algorithm
to model-based 3D tracking of the lower part of a human body, seeFigure 13.9(a).
This means that the 3D rigid body motion (RBM) and the joint angles, also called
the pose, are estimated by exploiting the known 3D model of the tracked object. The
mesh model illustrated in Figure 13.9(d) has 18 degrees of freedom (DoF) , namely
6 for the rigid body motion and 12 for the joint angles of the hip, knees, and feet.
Although a marker-lessmotion capture system is discussed,markers are also sticked
to the target object in order to provide a quantitativ e comparison with a commercial
marker basedsystem.
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Fig. 13.9. From left to righ t: (a) Original image. (b) Silhouette. (c) Estimated
pose. (d) 3D model.

Using the extracted silhouette as shown in Figure 13.9(b), one can de�ne an energy
function V which describes the di�erence between the silhouette and an estimated
pose.The posethat �ts the silhouette best takes the global minim um of the energy
function, which is searched by the I SA. The estimated pose projected onto the
image plane is displayed in Figure 13.9(c).

Pose represen tation

There are several ways to represent the poseof an object, e.g. Euler angles,quater-
nions [16], twists [20], or the axis-angle representation. The I SA requires from the
representation that primarily the mean but also the variance can be at least well
approximated. For this purp ose,we have chosenthe axis-angle representation of the
absolute rigid body motion M given by the 6D vector (� ! ; t ) with

! = (! 1 ; ! 2 ; ! 3), k! k2 = 1 and t = (t1 ; t2 ; t3).

Using the exponential, M is expressedby

M =
�

exp(� !̂ ) t
0 1

�
, !̂ =

0

@
0 � ! 3 ! 2

! 3 0 � ! 1

� ! 2 ! 1 0

1

A . (13.20)

While t is the absolute position in the world coordinate system, the rotation vector
� ! describes a rotation by an angle � 2 R about the rotation axis ! . The function
exp(� !̂ ) can be e�cien tly computed by the Rodriguez formula [20].
Given a rigid body motion de�ned by a rotation matrix R 2 SO(3) and a translation
vector t 2 R3 , the rotation vector is constructed according to [20] as follows: When
R is the identit y matrix, � is set to 0. For the other case,� and the rotation axis !
are given by

� = cos� 1
�

tr ace(R) � 1
2

�
, ! =

1
2sin(� )

0

@
r 32 � r 23

r 13 � r 31

r 21 � r 12

1

A . (13.21)

We write log(R) for the inversemapping of the exponential.
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The mean of a set of rotations r i in the axis-angle representation can be computed
by using the exponential and the logarithm as described in [22, 23]. The idea is to
�nd a geodesic on the Riemannian manifold determined by the set of 3D rotations.
When the geodesic starting from the mean rotation in the manifold is mapped by
the logarithm onto the tangent spaceat the mean, it is a straight line starting at
the origin. The tangent spaceis called exponential chart .
Hence, using the notations

r 2 ? r 1 = log (exp(r 2) � exp(r 1)) , r � 1
1 = log

�
exp(r 1)T

�

for the rotation vectors r 1 and r 2 , the mean rotation �r satis�es
X

i

�
�r � 1 ? r i

�
= 0. (13.22)

Weighting each rotation with � i , yields the least squaresproblem:

1
2

X

i

� i



 �r � 1 ? r i




 2

2
! min . (13.23)

The weighted mean can thus be estimated by

r̂ t +1 = r̂ t ?

 P
i � i

�
r̂ � 1

t ? r i
�

P
i � i

!

. (13.24)

The gradient descent method takesabout 5 iterations until it converges.
The variance and the normal density on a Riemannian manifold can also be approxi-
mated, cf. [24]. Since,however, the variance is only used for di�using the particles, a
very accurate approximation is not needed.Hence, the variance of a set of rotations
r i is calculated in the Euclidean spaceR3 .
The twist representation used in [7, 26] and in chapters 11 and 12 is quite similar.
Instead of a separation between the translation t and the rotation r , it describes
a screw motion where the motion velocity � also a�ects the translation. A twist
�̂ 2 se(3)3 is represented by

� �̂ = �
�

!̂ v
0 0

�
, (13.25)

where exp(� �̂ ) is a rigid body motion.
The logarithm of a rigid body motion M 2 SE (3) is the following transformation:

� ! = log(R), v = A � 1 t , (13.26)

where
A = (I � exp(� !̂ )) !̂ + ! ! T � (13.27)

is obtained from the Rodriguez formula. This follows from the fact, that the two
matrices which comprise A have mutually orthogonal null spaceswhen � 6= 0. Hence,
Av = 0 , v = 0.
We remark that the two representations are identical for the joints where only a ro-
tation around a known axis is performed. Furthermore, a linearization is not needed
for the I SA in contrast to the poseestimation as described in chapters 11 and 12

3 se(3) is the Lie algebra that corresponds to the Lie group SE (3).
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Pose prediction

The I SA can be combined with a poseprediction in two ways. When the dynamics
are modelled by a Mark ov processfor example, the particles of the current frame can
be stored and predicted for the next frame according to the processas done in [12].
In this case, the I SA is already initialized by the predicted particles. But when
the prediction is time consuming or when the history of previous posesis needed,
only the estimate is predicted. The I SA is then initialized by di�using the particles
around the predicted estimate. The reinitialization of the particles is necessaryfor
example when the prediction is based on local descriptors [13] or optical 
o w as
discussedin chapter 11 and [5].
In our example, the poseis predicted by an autoregressionthat takesthe global rigid
body motions Pi of the last N frames into account [13]. For this purp ose,we use a
set of twists � i = log(Pi P � 1

i � 1) representing the relativ e motions. By expressing the
local rigid body motion as a screw action, the spatial velocity can be represented by
the twist of the screw, see[20] for details.

M

P P

P3

M

x

x'

O
1

x
1

2
2

1

1 2 x2
'

M3

Fig. 13.10. Transformation of rigid body motions from prior data Pi in a current
world coordinate system M 1 . A proper scaling of the twists results in a proper
damping.

In order to generate a suited rigid body motion from the motion history, a screw
motion needs to be represented with respect to another coordinate system. Let
�̂ 2 se(3) be a twist given in a coordinate frame A. Then for any G 2 SE (3), which
transforms a coordinate frame A to B , is G�̂ G� 1 a twist with the twist coordinates
given in the coordinate frame B , see[20] for details. The mapping �̂ 7�! G�̂ G� 1 is
called the adjoint transformation associated with G.
Let � 1 = log(P2P � 1

1 ) be the twist representing the relativ e motion from P1 to P2 .
This transformation can be expressedas local transformation in the current coor-
dinate system M 1 by the adjoint transformation associated with G = M 1P � 1

1 . The
new twist is then given by �̂ 0

1 = G�̂ 1G� 1 . The advantage of the twist representation
is now, that the twists can be scaledby a factor 0 � � i � 1 to damp the local rigid
body motion, i.e. �̂ 0

i = G� i �̂ i G� 1 . For given � i such that
P

i � i = 1, the predicted
poseis obtained by the rigid body transformation

exp(�̂ 0
N ) exp(�̂ 0

N � 1) : : : exp(�̂ 0
1). (13.28)
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Energy function

The energy function V of a particle x, which is used for our example, depends on
the extracted silhouette and on some learned prior knowledge as in [12], but it is
de�ned in a di�eren t way.
Silhouette: First of all, the silhouette is extracted from an image by a level set
based segmentation as in [8, 27]. We state the energy functional E for convenience
only and refer the reader to chapter 11 where the segmentation is described in detail.
Let 
 i be the image domain of view i and let � i

0(bx ) be the contour of the predicted
pose in 
 i . In order to obtain the silhouettes for all r views, the energy functional
E (bx; � 1 ; : : : ; � r ) =

P r
i =1 E (bx; � i ) is minimzed, where

E (bx; � i ) = �
Z

H (� i ) ln pi
1 + (1 � H (� i )) ln pi

2 dx

+ �
Z


 i

�
�
� r H (� i )

�
�
� dx + �

Z


 i

�
� i � � i

0(bx )
� 2

dx. (13.29)

In our experiments, we weighted the smoothness term with � = 4 and the shape
prior with � = 0:04.
After the segmentation, 3D-2D correspondencesbetween the 3D model (X i ) and a
2D image (x i ) are established by the projected vertices of the 3D mesh that are
part of the model contour and their closest points of the extracted contour that
are determined by a combination of an iterated closest point algorithm [4] and an
optic 
o w basedshape registration [25]. More details about the shape matching are
given in chapter 12. We write each correspondenceas pair (X i ; x i ) of homogeneous
coordinates.
Each image point x i de�nes a projection ray that can be represented as Pl •ucker
line [20] determined by a unique vector n i and a moment m i such that x � n i � m i = 0
for all x on the 3D line. Furthermore,

kx � n i � m i k2 (13.30)

is the norm of the perpendicular error vector between the line and a point x 2 R3 .
As we already mentioned, a joint j is represented by the rotation angle � j . Hence,
we write M (! ; t ) for the rigid body motion and M (� j ) for the joints. Furthermore,
we have to consider the kinematic chain of articulated objects. Let X i be a point on
the limb ki whose position is in
uenced by si joints in a certain order. The inverse
order of these joints is then given by the mapping � k i , e.g., a point on the left shank
is in
uenced by the left knee joint � k i (4) and by the three joints of the left hip � k i (3),
� k i (2), and � k i (1).
Hence, the poseestimation consists of �nding a posex such that the error

err S (x; i ) :=










�
M (! ; t )M (� � k i

(1) ) : : : M (� � k i
( s i ) )X i

�

3� 1
� n i � m i










2

(13.31)

is minimal for all pairs, where (�)3� 1 denotes the transformation from homogeneous
coordinates back to non-homogeneouscoordinates.
Prior Kno wledge: Using prior knowledge about the probabilit y of a certain pose
can stabilize the pose estimation as shown in [12] and [6]. The prior ensures that
particles representing a familiar pose are favored in problematic situations, e.g.,
when the observed object is partially occluded. As discussed in chapter 11, the
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probabilit y of the various posesis learned from N training samples,where the density
is estimated by a Parzen-Rosenblatt estimator [21, 29] with a Gaussian kernel

ppose (x) =
1

(2 � � 2)d= 2 N

NX

i =1

exp
�

�
kx i � xk2

2

2 � 2

�
. (13.32)

In our experiments, we chose the window size � as the maximum second nearest
neighbor distance between all training samplesas in [12].
Incorporating the learned probabilit y of the posesin the energy function has addi-
tional advantages.First, it already incorporates correlations betweenthe parameters
of a pose{ and thus of a particle { yielding an energy function that is closer to the
model and the observed object. Moreover, it can be regardedasa soft constraint that
includes anatomical constraints, e.g. by the limited freedom of joints movement, and
that prevents the estimates from self-intersections since unrealistic and impossible
posescannot be contained in the training data.
Altogether, the energy function V of a particle x is de�ned by

V (x) :=
1
l

lX

i =1

err S (x; i )2 � � ln( ppose (x)), (13.33)

where l is the number of correspondences.In our experiments, we set � = 8.

Results

Fig. 13.11. Left: Results for a walking sequencecaptured by four cameras (200
frames). Righ t: The joint angles of the right and left knee in comparison with a
marker basedsystem.

In our experiments, we tracked the lower part of a human body using four calibrated
and synchronized cameras.The walking sequencewas simultaneously captured by a
commercial marker basedsystem4 allowing a quantitativ e error analysis. The train-
ing data used for learning ppose consisted of 480 samples that were obtained from
walking sequences.The data was captured by the commercial system before record-
ing the test sequencethat was not contained in the training data.

4 Motion Analysis system with 8 Falcon cameras.
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Fig. 13.12. Weighted particles at t = 0, 1, 2, 4, 8, and 14 of I SA. Particles with
a higher weight are brighter, particles with a lower weight are darker. The particles
converge to the posewith the lowest energy as t increases.

The I SA performed well for the sequenceconsisting of 200frames using a polynomial
annealing scheme with b = 0:7, a dynamic variance scheme with c = 0:3, and the
selection kernel (13.9). Results are given in Figure 13.11 where the diagram shows
a comparison of the estimated knee-joint angles with the marker basedsystem.
The convergenceof the particles towards the pose with the lowest energy is illus-
trated for one frame in Figure 13.12.Moreover, it shows that variance of the particles
decreaseswith an increasing number of annealing steps. This can also be seenfrom
Figure 13.13 where the standard deviations for four parameters, which are scaled
by c, are plotted. While the variances of the hip-join t and of the knee-joint decline
rapidly , the variance of the ankle increasesfor the �rst stepsbefore it decreases.This
behavior results from the kinematic chain of the legs.Since the ankle is the last joint
in the chain, the energy for a correct ankle is only low when also the previous joints
of the chain are well estimated.

(a) Z-coordinate. (b) Hip. (c) Knee. (d) Foot.

Fig. 13.13. Variance of the particles during I SA. The scaled standard deviations
for the z-coordinate of the position and for three joint anglesare given. The variances
decreasewith an increasing number of annealing steps.
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Fig. 13.14. Left: Energy of estimate for walking sequence(200 frames). Righ t:
Error of estimate (left and right knee).

On the right hand side of Figure 13.14, the energy of the estimate during tracking
is plotted. We also plotted the root-mean-square error of the estimated knee-angles
for comparison where we used the results from the marker based system as ground
truth with an accuracy of 3 degrees.For n = 250 and T = 15, we achieved an overall
root-mean-squareerror of 2:74 degrees.The error was still below 3 degreeswith 375
particles and T = 7, i.e. nT = 2625.With this setting, the I SA took 7� 8 secondsfor
approximately 3900 correspondencesthat were established in the 4 images of one
frame. The whole system including segmentation, took 61 secondsfor one frame.
For comparison, the iterativ e method as used in chapter 12 took 59 secondswith an
error of 2:4 degrees.However, we have to remark that for this sequencethe iterativ e
method performed very well. This becomesclear from the fact that no additional
random starting points were needed. Nevertheless, it demonstrates that the I SA
can keep up even in situations that are perfect for iterativ e methods.

Fig. 13.15. Left: Random pixel noise. Righ t: Occlusions by random rectangles.

Figures 13.16and 13.17show the robustnessin the presenceof noiseand occlusions.
For the �rst sequence,each frame was independently distorted by 70% pixel noise,
i.e., each pixel value was replaced with probabilit y 0:7 by a value uniformly sampled
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from the interval [0; 255]. The secondsequencewasdistorted by occluding rectangles
of random size, position, and gray value, where the edge lengths were in the range
from 1 to 40. The knee angles are plotted in Figure 13.15. The root mean-square
errors were 2:97 degrees,4:51 degrees,and 5:21 degreesfor 50% noise, 70% noise,
and 35 occluding rectangles, respectively.

Fig. 13.16. Estimates for a sequencedistorted by 70% random pixel noise. One
view of frames 35, 65, 95, 125, 155, and 185 is shown.

Fig. 13.17. Estimates for a sequencewith occlusionsby 35 rectangleswith random
size, color, and position. One view of frames 35, 65, 95, 125, 155, and 185 is shown.
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13.5 Discussion

We intro duced a novel approach for global optimization, termed interacting sim-
ulated annealing (I SA), that converges to the global optim um. It is based on an
interacting particle systemwhere the particles are weighted according to Boltzmann-
Gibbs measures determined by an energy function and an increasing annealing
scheme.
The variance of the particles provides a good measure of the con�dence in the
estimate. If the particles are all near the global optim um, the variance is low and only
a low di�usion of the particles is required. The estimate, in contrast, is unreliable for
particles with an high variance. This knowledge is integrated via dynamic variance
schemesthat focus the search on regions of interest depending on the con�dence in
the current estimate. The performance and the potential of I SA was demonstrated
by means of two applications.
The �rst example showed that our approach can deal with local optima and solves
the optimization problem well even for noisy measurements. However, we also pro-
vided some limitations of the dynamic variance schemeswhere standard global op-
timization methods might perform better. Since a comparison with other global
optimization algorithm is out of the scope of this intro duction, this will be done in
future.
The application to multi-view human motion capturing, demonstrated the embed-
ding of I SA into a complex system. The tracking system included silhouette ex-
traction by a level-set method, a pose prediction by an auto-regression, and prior
knowledge learned from training data. Providing an error analysis, we demonstrated
the accuracy and the robustnessof the system in the presenceof noiseand occlusions.
Even though we considered only a relativ e simple walking sequencefor demonstra-
tion, it already indicates the potential of I SA for human motion capturing. Indeed,
a comparison with an iterativ e approach revealed that on the one hand global op-
timization methods cannot perform better than local optimization methods when
local optima are not problematic as it is the casefor the walking sequence,but on the
other hand it also showed that the I SA can keepup with the iterativ e method. We
expect therefore that the I SA performs better for faster movements, more complex
motion patterns, and human models with higher degreesof freedom. In addition,
the intro duced implementation of the tracking system with I SA has one essential
drawback for the performance. While the poseestimation is performed by a global
optimization method, the segmentation is still susceptible to local minima since the
energy function (13.29) is minimized by a local optimization approach.
As part of future work, we will integrate I SA into the segmentation processto over-
come the local optima problem in the whole system. Furthermore, an evaluation
and a comparison with an iterativ e method needsto be done with sequencesof dif-
ferent kinds of human motions and also when the segmentation is independent of
the poseestimation, e.g., as it is the casefor background subtraction. Another im-
provement might be achieved by considering correlations betweenthe parameters of
the particles for the dynamic variance schemes,where an optimal trade-o� between
additional computation cost and increasedaccuracy needsto be found.
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