TSRS 1%

CODING OF ARBITRARILY SHAPED OBJECTS WITH BINARY AND
GREYSCALE ALPHA-MAPS: WHAT CAN MPEG-4 DO FOR YOU?

Jorn Ostermann

AT&T Labs — Research, Room 3-231, 100 Schultz Dr., Red Bank, NJ 07701, USA
ostermann(@research.att.com

Abstract

MPEG-4 Visual, that part of the upcoming MPEG-4 standard
describing the coding of natural and synthetic video signals,
allows the encoding of video objects using motion, texture and
shape information. In this paper, the shape coding algorithms
and related texture coding algorithms are described. Whereas
binary shapes are coded using a context-based arithmetic en-
coder with motion compensation, the coding of greyscale alpha
maps requires to code the values of the alpha maps inside of the
object in addition to the binary shape information. In order to
allow for an efficient coding of the texture at the boundary of
arbitrarily shaped objects, padding techniques are used in the
encoder and decoder.

1. Introduction

MPEG-4 Visual will be the first international standard allowing
the transmission of arbitrarily shaped video objects (VO) [1][2].
Following an object-based approach, MPEG-4 Visual transmits
texture, motion, and shape information of one VO within one bit
stream. The bit streams of several VOs and accompanying com-
position information can be multiplexed such that the decoder
receives all the information to decode the VOs. The compositor

of the terminal takes the decoded VOs and arranges them into a
video scene (Figure 1). This enables applications like content-
based storage and retrieval that have to provide access to video
data based on object descriptions, where objects are described by
texture, shape and motion. Studio and television post-production
applications require editing of video content with objects repre-
sented by texture and shape and will benefit in coding efficiency
that MPEG-4 provides. For collaborative scene visualization like
augmented reality, we want to place video objects into the scene.
Mobile multimedia applications require content-based interac-
tivity and content-based scalability in order to allocate limited
bitrate to fit the individual needs.

As with texture coding, efficiency of shape coding depends to a
large extend on the encoder. Two types of VOs are distin-
guished: For opaque objects, binary shape information is trans-
mitted (Section 2). Transparent objects are described by grey-
scale alpha maps (8 bits) defining the outline as well as the
transparency of an object (Section 5). Texture coding for bound-
ary blocks of arbitrarily shaped VOs is discussed in Section.3.
Section 4 explains the structure of the MPEG-4 encoder when
coding arbitrarily shaped video objects. An overview of the de-
coder complexity and coding efficiency is given in Section 6.

Figure 1: An arbitrarily shaped video object is composed onto a rectangular background image. Binary shape coding allows
describing objects with constant transparency whereas grayscale alpha maps allow describing objects with arbitrary transpar-

ency providing for more flexibility for image composition.

2. Context-Based Arithmetic Shape Coding

In order to enable content based access to video objects, MPEG-
4 codes the shape of video objects [3]. A frame with an arbitrar-
ily shaped VO is called video object plane (VOP). The shape is
encoded as a bitmap. For binary shape coding, a rectangular
bounding box enclosing the arbitrarily shaped VOP is formed
such that its horizontal and vertical dimensions are multiples of
16 pels (macroblock size).

Each block of size 16x16 pels within this bounding box is called
binary alpha block (BAB). Each BAB is associated with the co-
located macroblock. Three types of BABs are distinguished and
signaled to the decoder: Transparent blocks do not contain in-
formation about the object, opaque blocks are located entirely
inside the object and boundary blocks cover part of the object as
well as part of the background. For boundary blocks a context-
based shape coder was developed. This coder exploits the spatial
redundancy of the binary shape information to be coded. Pels are
coded in scan-line order and row by row. Shape encoding in
intra mode is described in Section 2.1. Then, this technique is
extended to include an inter mode (Section 2.2).

2.1 Intra Mode

In intra mode, three different types of macroblocks are distin-
guished: Transparent and opaque blocks are signaled as mac-
roblock type. The macroblocks on the object boundary contain-
ing transparent as well as opaque pels belong to the third type.
For these boundary macroblocks, a template of 10 pels is used to
define the causal context for predicting the shape value of the
current pel (Figure 2a). For encoding the state transition, a con-
text-based arithmetic encoder is used. The probability table of
the arithmetic encoder for the 1024 contexts was derived from
sequences that are outside of the test set used for comparing
different shape coders. With two bytes allocated to describe the
symbol probability for each context, the table size is 2048 bytes.

The template extends up to 2 pels to the left, to the right and to
the top of the pel to be coded (Figure 2a). Hence, for encoding
the pels in the 2 top and left rows of a macroblock, parts of the
template are defined by the shape information of the already
transmitted macroblocks on the top and on the left side of the
current macroblock. For the 2 right-most columns, each unde-
fined pel of the context is set to the value of its closest neighbor
inside the macroblock.

In order to increase coding efficiency as well as to allow lossy
shape coding, a macroblock can be subsampled by a factor of 2
or 4 resulting in a sub-block of size 8*8 pels or 4*4 pels, respec-
tively. The sub-block is encoded using the encoder as described
above. The encoder transmits to the decoder the subsampling
factor such that the decoder decodes the shape data and then
upsamples the decoded sub-block to macroblock size. Obvi-
ously, encoding the shape using a high subsampling factor is
more efficient, but the decoded shape after upsampling may or
may not be the same as the original shape. Hence, this subsam-
pling is mostly used for lossy shape coding.

Depending on the upsampling filter, the decoded shape can look
somewhat blocky. Several upsampling filters were investigated.
The best performing filter in terms of subjective picture quality
is an adaptive non-linear upsampling filter. The context of this
upsampling filter is shown in Figure 3.

Intra % | %ot |
x|x|.

°]

Current
Frame

Previous

Figure 2: Templates for defining the context of the pel to be
coded (o), a) defines the intra mode context, b) the context
when coding in inter mode. The alignment is done after mo-
tion compensating the previous VOP.

The efficiency of the shape coder differs depending on the ori-
entation of the shape data. Therefore the encoder can choose to
code the block as described above or transpose the macroblock
prior to arithmetic coding.

2.2 Inter Mode

In order to exploit temporal redundancy in the shape informa-
tion, the coder described above is extended by an inter mode
requiring motion compensation and a different template for de-
fining the context.)

For motion compensation, a 2D integer pel motion vector is
estimated using full search for each macroblock in order to
minimize the prediction error between the previous coded VOP
shape M, , and the current shape M,. The shape motion vectors
are predictively encoded with respect to the shape motion vec-
tors of neighboring macroblocks. If no shape motion vector is
available, texture motion vectors are used as predictors. The
shape motion vector of the current block is used to align a new
template designed for coding shape in inter mode (Figure 2b).
The template defines a context of 9 pels resulting in 512 con-
texts. The probability for one symbol is described by 2 bytes
giving a probability table size of 1024 bytes. Four pels of the
context are neighbors of the pel to be coded, 5 pels are located at
the motion compensated location in the previous VOP. Assum-
ing that the motion vector (1:1I.a'y)T points from the current VOP,
to the previous coded VOP’,_, the part of the template located in
the previously coded shape is centered at m '(x-d,,y-d,) with (x,y)"
being the location of the current pel to be coded.

In inter mode, the same options as in intra mode like subsam-
pling and transposing are available. For lossy shape coding, the
encoder may also decide that the shape representation achieved
by just carrying out motion compensation is sufficient thus sav-
ing bits by avoiding the coding of the prediction error. The en-
coder can select one of 7 modes for the shape information of
each macroblock: transparent, opaque, intra, inter with and with-
out shape motion vectors, and inter with/without shape motion
vectors and prediction error coding. These different options with

optional subsampling and transposition allow for encoder im-
plementations of different coding efficiency and implementation
complexity.

Oxxoxxoxxo
X XX K. K X
oxxoxxoxxo
X X_X X_X X
Oxxoxxoxxo
X X X X X X
o O O O

Figure 3: For shape upsampling, the upsampled pels (x) lie
between the location of the subsampled pels (o). Neighboring
pels (bold o) defining the values (transparent or opaque) of
the pels to be upsampled (bold x).

3. Texture Coding of Boundary Blocks

In order to encode the texture of a boundary block, MPEG-4
treats the macroblock as a regular macroblock and encodes each
block using an 8*8 DCT. The decoder decodes the texture and
discards all information that falls outside of the decoded shape.
In order to increase coding efficiency, the encoder can choose
the texture of pels outside of the object such that the bitrate is
minimized. This non-normative process is called padding. For
intra mode, a lowpass extrapolation filter was developed, for
inter mode setting these pels to 0 results in good coding effi-
ciency.

For motion compensated prediction of the texture of the current
VOP, the reference VOP is motion compensated using over-
lapped block motion compensation. In order to guarantee that
every pel of the current VOP has a value to be predicted from,
some or all of the boundary and transparent blocks of the refer-
ence VOP have to be padded. le., pels outside of the motion
compensated arbitrarily shaped VOP get defined by this padding
process. Boundary blocks are padded using repetitive padding:
Boundary pels are the pels on the object boundary belonging to
the VOP. First boundary pels are replicated in horizontal
direction, then in vertical direction making sure that if a value
can be assigned to a pel by both padding directions an average
value is assigned to the pel. Since this repetitive padding puts a
significant computational burden on the decoder, a simpler mean
padding is used in a second step. Transparent macroblocks
bordering boundary blocks are assigned to an average value
determined by the pels of its neighboring padded blocks.

4. Encoder Architecture

Figure 4a shows the block diagram of this object-based video
coder. In contrast to the block diagram shown in the MPEG-4
standard, this diagram focuses on the object-based mode in order
to allow a better understanding of how shape coding influences

the encoder and decoder. Image analysis creates the bounding
box for the current VOP S, and estimates texture and shape mo-
tion of the current VOP S, with respect to the reference VOP S,
;- Shape motion vectors of transparent macroblocks are set to 0.
Parameter coding encodes the parameters predictively. The pa-
rameters get transmitted, decoded and the new reference VOP is
stored in the VOP memory and also handed to the compositor of
the decoder for display. The increased complexity due to the
coding of arbitrarily shaped video objects becomes evident in
Figure 4b that shows a detailed view of the parameter coding.

The parameter coder encodes first the shape of the boundary
blocks using shape and texture motion vectors for prediction.
Then shape motion vectors are coded. The shape motion coder
knows which motion vectors to code by analyzing the possibly
lossily encoded shape parameters. For texture prediction, the
reference VOP is padded as described above. The prediction
error is then padded using the original shape parameters to de-
termine the area to be padded. Using the original shape as a ref-
erence for padding is again an encoder choice not implemented
in the MPEG-4 CD software [1]. Finally, the texture of each
macroblock is encoded using DCT.

5. Grey-scale alpha map coding

For a transparent object that has a constant transparency, the
shape is encoded using the binary shape coder and the 8 bit value
of the alpha map [4]. Blending the alpha map near the object
boundary is not supported by the video decoder since this is a
composition issue.

For object with varying alpha maps, shape coding is done in two
steps. In the first step, the outline of the object is losslessly en-
coded as a binary shape (Section 2). In the second step, the ac-
tual alpha map is treated like the luminance of an object with
binary shape and coded using padding, motion compensation
and DCT as outlined in Section 3.

6. Experimental Results

In this section, 2 question are answered: How many bits do we
have to spend in order to code arbitrarily shaped video objects
and how much computation does the decoder require.

For coding of arbitrarily video objects like a weather announcer
in a newscast, shape coding requires 500 bits/frame in intra
mode and 300 bits in inter mode. For scenes with a moderate
amount of motion like 2 kids playing ball, the required rate in-
creases to 1700 bits/frame for intra and 1600 bits/frame for inter
mode. These numbers are based on CIF, 10 Hz. For scenes with
more complex objects and higher motion, the required bitrate
increases further. If the goal of the encoder is to provide subjec-
tively lossless coding, then the required bitrate can be reduced by
30% to 50%. Subjectively lossless coding can be achieved by
prefiltering the shape information using morphological filters
and allowing temporal prediction errors of the shape not to be
compensated. When coding shapes lossily, the topology of the
VO should not be changed such that no small independent areas
at object boundaries are created. Again, this is an encoder issue
not described in the literature or the standard.

of shapes with a high portion of boundary blocks

can require up to 50% of the decoding time.
Therefore, concern was raised that the complex-

A\

ity of the shape decoder is too high for low
complexity terminals. There are several methods

Parameter
Decoding

by which the complexity can be reduced by
more than 50%:

Predictio
Shape Data ;
Padding
for MC Steream_
Tuﬂuremeio‘
b Dala
VOP Sj.1

coder (b) for coding of arbitrarily shaped video objects.

Texture Matio
VOP % Image | Shape Motion o] Parameter
™ Analysis | Shape o) Coding
Texture
a VOP §.1 VOP VOP §
Memory

Lesture Motan =]-| Coder }—fb-

Shape Motion
4
Sps 4 Coder t 1~ " Comdsmape _ _ _ [T """ "7 "~

L
Texture 2 Padding o
Y for Coding| 1_°°%" [™

e Coding of shape only in subsampled mode.

e Replace padding according to Section 3
with constant value padding with the value
for padding transmitted in the bitstream.

e Switch off the adaptive scanning of the
shape blocks.

e Replace the upsampling filter with a simple
pel repetition filter.

This reduction comes at a price. The bitrate for

M this low complexity coder increases up to 10%.

7. Conclusions

MPEG-4 is the first international standard cov-
ering shape coding. It will be finalized in No-
vember 1998. The purpose of the shape coder
within MPEG-4 is to enable many new function-

Figure 4: Block diagram of the video encoder (a) and the parameter

alities and applications like object-based data-
base access, content-based image and video
representation, video editing, efficient storage of
movies prior to composition and more. The pri-
mary purpose is not to increase coding effi-
ciency for conventional video although that has
also been shown for some video sequences.

The MPEG-4 enables coding of binary shape
signals where the object has a constant transpar-
ency value allowing for translucent objects and

For gray-scale alpha map coding, the binary shape infor-
mation has to be transmitted. The actual alpha map is
coded like luminance information. There are two main
differences between the alpha map and a luminance sig-
nal: 1.)Usually, the human observer is not very sensitive to
quantization errors in the alpha mask. Therefore, the alpha
map is much more coarsely quantized. 2.) The alpha map
contains few high frequencies. Hence, alpha maps can be
coded with relatively few bits.

Children

Ls LS

Figure 5: Allocation of relative time to different tasks of a
decoder in % shown for 3 different test sequences (from [5]).

Coding of arbitrarily shaped objects instead of rectangular
frames requires shape coding as well as padding. In Fig. 5, the
time an optimized coder spends decoding shape and padding is
given for several bitstreams with complicated shapes. Decoding

grayscale alpha maps that allow objects to have varying trans-
parency.

In order to allow efficient encoding of the arbitrarily—shaped
video objects, special attention has to be given to optimal texture
prediction at object boundaries. The presented encoder architec-
ture allows this. For terminals with low computational power
significant savings in computational complexity can be achieved
by simple changes to the coder. They are currently considered by
MPEG-4.

8. References

[1] “Text for CD 14496-2 Visual”, ISO/IEC JTC1/SC29/WGl11
MPEG97/N1902, November 1997.

[2] J. Ostermann, E. S. Jang, J.-S.Shin, T. Chen, “Coding of Arbitrarily
Shaped Video Objects in MPEG-4", Special session on shape coding,
ICIP 97, Santa Barbara, 1997.

[3] N. Brady, F. Bossen, N. Murphy, “Context-based arithmetic encod-
ing of 2D shape sequences”, Special session on shape coding, ICIP 97,
Santa Barbara, 1997.

[4] W. Chen, M. Lee, "Alpha-Channel Compression in Video Coding",
Special session on shape coding, ICIP 97, Santa Barbara, 1997.

[5] “Report of the adhoc group on binary shape complexity at simple
profile”, ed. Andy Hotchkiss, ISO/IEC JTC1/SC29/WG11
MPEG98/M3183, San Jose Meeting, February 98.

