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Abstract—Baba is You is a challenging puzzle game in which
the player can modify the rules of the game. This yields a large
variety of puzzles and an enormous state space to be searched
through. Recently, the Feature Space Search algorithm has shown
great results in Sokoban, which apart from the rule modification
shares many similarities to Baba is You. It uses multiple heuristics
to guide the search into promising regions of the search space. In
this work, we are proposing a similar concept for solving Baba is
You based on multiple heuristics that are aggregated for guiding
a tree-based search process. However, finding parameters for
weighting/prioritizing the different heuristics is a non-trivial task.
This process is done, by applying evolutionary algorithms for
single- and multi-objective optimization. Specifically, we compare
the effects of these different optimization schemes on the agents’
general level-solving capabilities. In all cases, the agent was able
to adapt well to the training and test set with no significant
differences among the optimization schemes. Compared with
state-of-the-art Baba is You agents our search-based approach
shows an improved performance in terms of the number of levels
being solved, as well as a reduction in the average time required
to solve a level.

Index Terms—Baba Is You, Parameter Optimization, Evolu-
tionary Algorithms

I. INTRODUCTION

Sokoban is a puzzle game in which the player controls a
character that pushes boxes around in a warehouse, trying to
move them to specific target locations. The player can only
push one box at a time, and the boxes cannot be pulled.
Sokoban and similar puzzle games present players with many
challenging levels to solve. Finding a solution for the more
complex levels can be a tough challenge for humans and AI
agents alike. Their large state space as well as the long and
precise action sequences required to solve a level are hard to
overcome while developing AI agents [1]. Sokoban has been
proven to be computationally difficult and belongs to the class
of NP-hard problems [2].

In this work, we focus on the Sokoban-like game Baba
is You (see detailed description in Section II). The game
features the unique concept of allowing players to modify
the underlying rules over the course of a single level. We
developed a search-based agent for solving Baba is You levels
making use of multiple heuristics to guide its search process.
Each of these heuristics concentrates on another aspect of the
game’s state and action space and has shown its use in solving
a subset of levels. For developing an agent that aims to solve

as many levels as possible, we combine these heuristics into
a single scoring function. However, weighting these heuristics
has shown to be a non-trivial task. Therefore, we made use of
several optimization schemes to tune the heuristics’ weights.

In this study, we develop a Baba is You agent capable of
solving multiple levels efficiently. Our contributions can be
summarized by:

• Creating heuristics for solving Baba is You levels: We
implemented several heuristics taking various game-state
measurements into account. These heuristics have been
developed based on our own insights and analysis from
game-play experience and will be used to guide the tree-
based search process of our agent.

• Developing a performant Baba is You agent: Solving
levels needs to be quick and accurate. In our work, we
aggregate several heuristics into a single scoring function.
To reduce the agent’s computation time, we allow for
heuristics to be disabled while aiming to keep the agent’s
success rate high and the number of iterations during the
search low.

• Comparisons to state-of-the-art agents: The proposed
agent’s parameters are tuned using several evolution-
ary single- and multi-objective optimization algorithms.
Comparisons with Bayesian optimization show that the
evolutionary algorithms result in slightly better training
performance. Our final agent is tested against available
submissions of the Keke AI competition.

In Section II, we describe the game Baba is You and the
Keke AI Framework which will be used during the remainder
of our work. Section III summarizes recent works on Sokoban-
like games on which our proposed method will be based. We
present our agent and accompanying heuristics in Section IV.
The process of optimizing the agent’s parameters is described
in the subsequent Section V. The resulting agent is compared
to the state-of-the-art in Section VI. Finally, in Section VII,
we summarize our work and ideas for how it can be further
improved in the future.

II. BABA IS YOU AND THE KEKE AI FRAMEWORK

Baba Is You is a puzzle video game developed by the
independent developer Arvi Teikariin. Originally developed as
a prototype during the Nordic Game Jam, the game has been
widely extended with new graphics, levels, and features until
its release on PC and Nintendo Switch in 2019. In the game,
the player walks around a grid-like game board to reach a979-8-3503-1458-8/23/$31.00 ©2023 IEEE



Fig. 1: An exemplary level from the Keke is You AI framework
showing multiple objects and rules.

given goal. It shares many resemblances with Sokoban-like
puzzle games, with the main difference being that the player
is able to change the rules of the game and alter the behavior
of the player character and other in-game elements. The game
has received widespread acclaim for its innovative gameplay
and has won numerous awards.

To better explain the unique concept of the game, we
describe the rule modification in more detail. For this purpose,
the game consists of a series of levels, each of which presents
the player with a game board filled with various words written
on tiles representing either objects of the game’s world (e.g.
Rock, Keke, Flag), concepts (e.g., win or die), or the linking
word ”is”. Each object word is linked to tiles showing a
graphical representation of this word. Multiple words can be
arranged to represent different rules or properties that can
be applied to the game, such as ”Keke is You” or ”Rock is
Push.” Rules consist of a combination of three words. The
middle word has to be Is to form a valid rule. Therefore rules
can be subdivided into a prefix and a suffix. The prefix is
mostly described by an object part like Baba Is, Flag Is. The
suffix can result in a feature or action, e.g. Is Win, Is You,
Is Kill. A classic rule set consists of Baba Is You and Flag
Is Win. Here, the player controls the object ”Baba” (a little
dog), and touching the flag object (not the word) represents
the winning condition. While moving around, the player can
rearrange the tiles to modify or invalidate existing rules and
create entirely new combinations until the current winning
condition is satisfied.

In terms of AI development, Baba Is You represents a
challenging problem for search-based approaches. Whereas
Sokoban-like games are already known for their large search
space, the interactive modification of rules results in even more
possibilities. Furthermore, as in many other puzzle games,
a single wrong decision can make the puzzle unsolvable,
limiting the use of limited-depth search-based algorithms such
as the Rolling Horizon Evolutionary Algorithm [3].

To study the development of AI agents, the Keke AI
Competition has been created [4]. The associated framework
allows the development of agents using javascript aiming to

solve a given set of levels. Therefore, each agent receives the
level’s starting configuration, and a simulator allowing one to
anticipate the result of its actions. The computation time of
each agent is limited to a maximum time and a maximum
number of iterations. Being part of the IEEE Conference on
Games 2022, the competition provided a set of baseline agents
and attracted multiple entries during its first year. Given a
budget of 10 seconds and 10000 iterations, the best agent
was able to achieve a 66% win rate on a hidden set of levels
according to the leaderboard on the competition webpage.

III. RELATED WORK

Since Baba is You is a relatively new problem in the AI
domain, we mainly focused on reviewing related work of
Sokoban-like games. Sokoban has a long tradition of being
targeted by AI agents [5] and still remains a tough problem
due to its long action sequences required to solve some levels.
This is a major challenge for search-based approaches since
with every move, the search space grows exponentially.

Luckily there often exists not just a single correct action
sequence, but multiple sequences to solve a level. For example,
in an open room without any obstacles, the agent may take
many paths to reach a given destination. On the contrary,
there also exist choice points in which a single bad decision
could leave the level unsolvable. This is the case when a
pushable block is moved into a corner and thus cannot be
moved anymore.

There are two types of solving Sokoban-like games. While
some Sokoban solvers rely on brute force (exploring many
states with low computational costs in between) others make
use of heuristics that tend to steer the agent in the right
direction at the cost of some computational overhead.

Furthermore, both of these techniques can benefit from
integrating expert knowledge that can be used to reduce the
search space by decomposing the original problem into several
simpler sub-problems. In the context of Sokoban, this has been
done by splitting the level into rooms and tunnels [6]. Sadly,
effective expert rules for reducing the complexity of Baba is
You levels are not yet known.

More generally, abstractions can be used to reduce the
complexity of the action and state space [7] by e.g. clustering
similar states. More specifically, using constrained clustering
techniques [8] would allow expert users to control the abstrac-
tion given their own experience with the game. Not all of these
techniques ensure completeness (every solvable level can be
used) after the abstraction has been applied, but they have
shown to benefit search-based approaches in other complex
domains [9].

Apart from these exhaustive search agents, other agents have
been developed in which the agent mixes the planning and
execution process. Here, the available time for the search pro-
cess is limited and after exhausting the computational budget
an action needs to be applied before the agent can continue
planning given the new state observation [10]. Alternatively,
the search may be reduced to a sampling-based approach such
as Monte Carlo Tree Search [11].



In the context of Sokoban, the Feature Space Search (FESS)
algorithm [12] has been shown to perform well in comparison
to other search-based agents. It has been the first algorithm to
solve 90 benchmark problems given a budget of 10 minutes per
problem. This has been achieved by using multiple heuristics.

In contrast, the development of Baba is You AI agents is
still in its infancy. Simple exhaustive search agents such as
depth- and breadth-first search are provided as baseline agents
in the Keke AI framework. Additionally, it included a single-
heuristic agent that applies a best-first-search algorithm and
has been used as a solver for the Baba is Y’all level editor [13].
Developing our own agent, we start with developing multiple
heuristics to be aggregated into a single heuristic score for
guiding our search-based agent. By doing so, we will allow
the agent to deactivate heuristics that have not proven to be
beneficial. Thereby, enhancing its search efficiency and level-
solving capabilities.

IV. METHODOLOGY

We present a method for solving levels in Baba is You. The
agent stores game states in a search tree and uses a priority
queue to determine the next node to be expanded. Each node
contains the following information:

• The score of the node (lower is better)
• The map-state saved as an ASCII representation
• The step sequence as a list
• The parent of the node
• Whether it is a final game state and its respective result
• Whether all player objects have died or not

The priority queue consists of all nodes with unexplored
child nodes. The nodes in the queue are sorted by their score,
with lower scores being prioritized. At each iteration, the
frontmost node in the queue is selected and its child states are
added to the tree and the queue. For each of the five available
actions (moving in 4 directions and waiting) we make use
of the simulator to anticipate the outcome of the next action
and calculate the respective information to create a new child
node, i.e., checking for victory or defeat, calculating a score
for the child node based on various heuristics, and adding the
child to the queue if it represents a unique game state. To
prevent the agent from getting stuck in a loop, we keep track
of previously visited game states and only add a child node to
the queue if its game state has not been encountered before.
For this purpose, a list of all previously visited map states
is maintained and compared with the map state of the child
node. Once a winning node has been identified, we return
the respective action sequence. Contrarily, if no more player
objects exist, because either they have died due to an effect or
no more rule of the type ”<x>is you” exists, the child will
be discarded and continued with the next child or the next
iteration. After the new nodes are added, the next iteration is
started. This process is repeated until either a solution is found
or one of the competition constraints is exceeded (max 10.000
iterations or max 10 seconds for a winning solution).

A. Heuristics
The calculation of the heuristic score is the most complex

step. In our agent, we make use of multiple heuristics that
are combined into a single scoring function using a linear
combination. These heuristics focus on various aspects of the
game and are divided into three categories: (1) object type
min-/maximizers, (2) distance min-/maximizers, and (3) meta-
heuristics. To allow for fine-tuning of the decision-making
process, each heuristic was assigned an adjustable weight that
determines its influence on the agent’s actions.

1) Object type min-/maximizers: The following heuristics
count the number of objects in a given category. The idea was
that generating helpful objects can be encouraged and harmful
objects can be penalized.

Goals: Counts the number of goal objects, i.e., the objects
where our agent would win if it manages to reach them. The
larger the number of objects, the larger, or smaller (if the
optimizer chooses a negative weight), the score will be. This
value is calculated using a logarithmic function to encourage
the agent to prioritize the first generated goals more highly
and subsequent goals less so that it does not solely focus on
increasing the goal count even if it has already reached one.

Playable objects: Counts the number of objects that the
agent can directly control and multiplies this value by the
weight provided by the optimizer. Given a positive weight, this
heuristic encourages the agent to keep as many of the player
objects alive and to create new player objects (if possible).

Pushable objects: All objects that the agent is allowed to
push are counted here. By default, all objects are immovable
and can only be pushed if there is a push rule associated with
the object in the currently active level.

Automovers: Auto movers are objects that move a field
once every iteration. They also tend to be objects that can kill
the player. The number of auto movers is counted linearly and
multiplied by the specified weight.

Threats: Threats in the game are simply the objects that can
kill the player. This heuristic penalizes/rewards the number of
threats linearly.

Sinker objects: Objects that move into ”sinkers” are de-
stroyed while also removing the sinker object. This means that
it is an obstruction for the agent, but it can also be used to
destroy other objects and open up new paths to the agent. This
heuristic counts the number of sinkers linearly, allowing the
optimizer to either punish or reward the creation/destruction
of sinker objects.

Stopping objects: Objects can become stopping objects
when their object name is combined with the rule ”is stop”.
They prevent all other objects from running through it. They
are counted linearly and rewarded/penalized according to their
given weight and their amount.

2) Distance min-/maximizers: The following heuristics are
typically used to minimize distances to specific object types,
e.g., goals. Since their weight could be both negative, they
could also be considered to be distance maximizers. In
practice, however, we have found that the optimizers have
always chosen minimization, which is why we will speak of



minimization in the following for the sake of simplicity. The
distances are calculated by averaging the Manhattan distance
(the number of moves it takes to reach the object) of all player
objects to all objects of a given type.

Minimization of the distance to threats: It may seem
counter-intuitive, but minimizing the distance between the
agent and killing objects has proven effective in testing. This
is because threat objects are often guarding important targets,
so it makes sense to search in their vicinity.

Minimization of the distance to Points of Interest (POI):
This is one of the most important heuristics, as it makes the
agent move near interactable objects. The POIs are goals, mov-
able objects, and words, all of which are weighted differently.
This heuristic has an additional fourth weight that punishes
the agent for not having any players left and is intended to
counter the fact that killing all player objects naturally causes
the distance to all POI objects to be zero. As mentioned before
POIs are often guarded by threats which result in two highly
correlated heuristics. However, since there are exceptions to
this rule, e.g. a level without any threats, we handle these two
separately.

Minimization of the distance to a winning word when
there is only one: Inspired by the macro moves from the
FESS paper [12], one of our ideas was to build heuristics
that only operate in certain situations. This heuristic is only
applied when there is only one ”win” word in the level and no
victory objects exist yet. Thereby, it helps to guide the agent
towards the vicinity of the single ”win” word in order to create
a victory condition.

3) Meta-heuristics:
Connectivity: We derived the connectivity heuristic used in

FESS [12]. Here, the number of closed rooms, i.e., rooms from
which one cannot reach other rooms, is counted and penalized,
leading the agent to open up as many rooms as possible. This
heuristic is computationally expensive, but it has led to the
solving of significantly more levels than without it.

Out-of-plan: As with the connectivity heuristic, this heuris-
tic is also derived from the FESS paper [12] but adapted for
Baba Is You. Here, the number of words that can no longer
be used is counted and penalized. For the different words,
different conditions apply as to when they count as ”unusable”.
For instance, the connecting word IS is not allowed to be in
any corner, while suffixes may be in all corners except the top
left because only here they can no longer form a rule. Words
that already form a rule are excluded from punishment. The
number of words that are ”out-of-plan” can be either rewarded
or punished.

Min-/ Maximization of different unique rule combina-
tions: The idea behind this heuristic was initially to enable the
optimizers to encourage the creation of new rules that had not
yet existed in the level in order to discover possible helpful
new combinations. Counter-intuitive to our expectations, pe-
nalizing the number of new unique rules was usually preferred
by the optimizers.

Rewarding of states with a path to victory: For this
heuristic, we developed a divide and conquer algorithm that

efficiently checks if there is a direct path to victory from any
of the player’s objects. If such a path exists, the heuristic re-
wards/punishes the agent, depending on the chosen weight by
the optimizer. Naturally, such a situation is usually rewarded
by the optimizer.

4) Combined Heuristic: The final heuristic is the result of
weighting above mentioned heuristic components. For a state
s and weight vector w = (w1, . . . , w17) the heuristic equals:

h(s) = w1 · NrOfGoals(s) + w2 · NrOfPlayables(s)

+ w3 · Connectivity(s) + w4 · OutOfPlan(s)

+ w5 · NrOfAutomovers(s) + w6 · NrOfThreats(s)

+ w7 · NrOfPushables(s) + w8 · NrOfSinkerObjects(s)

+ w9 · NrOfStoppingObjects(s) + w10 · DistToThreats(s)

+ w11 · DistToWin(s) + w12 · DistToWords(s)

+ w13 · DistToMovingObjects(s) + w14 · PlayerIsDead(s)

+ w15 · NrOfUniqueRules(s) + w16 · DistToWinIfOne(s)

+ w17 · PathToVictory(s)

Due to the large number of sub-heuristic, we checked for
their pair-wise linear correlation using Pearson’s correlation
coefficient. The strongest correlations have been observed for
the pairs ρ(NrOfStoppingObjects(s), OutOfPlay(s)) = 0.74
and ρ(NrOfGoals(s),OutOfPlay(s)) = −0.55. Those can be
interpreted as (1) given an increasing number of stopping
objects, more objects tend to be out of play and (2) the more
objects are out of play, the fewer goals we may have. Other
combinations had a correlation coefficient of 0.5 or less. Since
most heuristics are not strongly correlated we keep them all
for the succeeding optimization.

Additionally, we report the computational costs of each
heuristic by using our agent to play all levels of the Baba
is You benchmark and averaging the time taken to compute
a heuristic in each step of the agent’s search. Table I shows
the average time per heuristic and how much can be saved by
excluding one of them. Therefore, we implemented a threshold
to allow for disabling heuristics. Any weight that falls within
the range [−0.01, 0.01] will become 0 and the heuristic’s
evaluation will be skipped.

V. PARAMETER OPTIMIZATION

In our experiments, we test several optimization schemes
to tune the parameters of our agent and thereby improve its
performance. For this purpose, we make use of the levels being
provided by the Keke AI Competition framework [4]. While
the levels of the competition are unknown, we have multiple
level sets available. The largest one “full-biy” consists of 184
levels most of which have been generated by the community
using the mixed-initiative “Baba is Y’all” level editor [13].

We evaluated agents based on three criteria with decreasing
importance, i.e., (1) the number of levels solved by the agent,
(2) the average amount of iterations our agent needed to find a
solution, and (3) the average computation time. A total of 17
parameters needed to be tuned. Each parameter was bound by
the range [−10, 10], while values in the range of [−0.5, 0.5]



Heuristic Time

NrOfGoals 0.343µs
Connectivity 86.515µs
NrOfPlayers 0.186µs
OutOfPlan 2.829µs
NrOfAutomovers 0.094µs
NrOfThreats 0.125µs
NrOfPushables 0.147µs
NrOfSinkerObjects 0.087µs
NrOfStoppingObjects 0.360µs
DistToThreats 0.281µs

DistToWin, DistToWords
0.705µsDistToMovingObjects, PlayerIsDead

NrOfUniqueRules 0.704µs
DistToWinOfOne 0.164µs
PathToVictory 105.980µs

TABLE I: Average time for calculating each heuristic. Because
the heuristics DistToWin, DistToWords, DistToMovingObjects,
and PlayerIsDead are evaluated in a single run, we cannot
split their time costs.

resulted in the heuristic not being evaluated and instead a value
of 0 will be returned (cf. Section IV-A). During parameter
optimization we used 50 randomly selected levels of the full
level set for training, leaving 134 levels for our test set. During
training, each algorithm was given a budget of 2000 iterations
and a maximum of 2 seconds of computation time per level.
Once any of these thresholds has been reached, the level is
considered to be unsolved by the agent. Later during testing,
we set the thresholds to 10000 iterations and 10 seconds of
computation time per level. This corresponds to the settings
used in the competition to make our experiments comparable
with previous results. We made use of tighter time constraints
during parameter optimization to allow for exploring a larger
part of the parameter space and speed up the evaluation of
solution candidates in general. A disadvantage of this setup is
that due to the tighter time constraints, the optimizer might be
inclined to remove a sub-heuristic for speeding up computation
time.

For the parameter optimization, we made use of algorithm
implementations of the Python package pymoo [14]. The com-
petition framework has been extended by us to be able to send
parameterized agents to the javascript-based server app. The
code of our experiments and the corresponding results are pro-
vided at https://github.com/Razzorior/KekeCompetition. The
following sections present details of the optimization schemes
used throughout our experiments, being split into subsections
for single- and multi-objective optimization algorithms.

A. Single-Objective Optimization

For single-objective optimization we used the algo-
rithms differential evolution (DE) [15], evolutionary strategy
(ES) [16], a genetic algorithm (GA) [16], and the Hooke-
Jeeves pattern search algorithm (PS) [17]. DE, ES, and GA
had a population size of 10 and were run for 20 generations.
In total, each algorithm had a budget of 200 fitness evaluations.
Due to the high computational effort of our agent (a complex

search with a budget of several seconds), we could not
compute more generations. For each algorithm, we averaged
the results over 5 runs using different seeds.

In our single-objective evaluation, we combined the agent’s
level-solving rate and the number of iterations to solve a level
in a single objective. Since the ultimate goal is to achieve a
high solving rate, we multiply it with the maximum number
of iterations per level and add to it the remaining iterations.
The latter ensures that levels are solved as fast as possible.

fitness =
#solved
#levels

· max iterations + (max iterations −#it)

Figure 2a shows the min, mean, and max fitness values
per optimization algorithm. Based on the mean result per
algorithm, they can be clustered into two groups (GA,DE
and PS,ES). Among algorithms of the same group, the av-
erage performance of the final population differs just slightly.
Comparing all algorithms, the GA and the PS agent reached
the highest fitness of 3243 and 3244, respectively. The final
population of the GA agent performed slightly better than
the other algorithms which is why further experiments will
be based on this algorithm. The pattern search performed
worst minimal inferior to the evolutionary strategy approach.
Overall all algorithms optimized without much noise which
also resulted in a small variance in the end results.

We further compared the result of our evolutionary algo-
rithms with a Bayesian optimization-based approach. Bayesian
optimization achieved a maximum performance of 3218 during
the first 200 iterations, which is worse than the best solutions
found by the GA and PS algorithms in the same amount of
evaluations.

Finally, we have taken a look at the best parameter com-
binations found by each algorithm. For this evaluation, we
only took the very best agent per optimization run into
account. In total, 20 agents were considered (4 algorithms,
5 repetitions each). Figure 3a shows the distribution of each
parameter in the optimized parameter sets. It shows that some
parameters have a clear direction (w1, w10, w11, w12, w13), e.g.
it is beneficial to maximize the number of goals.

B. Multi-Objective Optimization

In the previous section, we evaluated the number of levels
being solved and the number of required iterations by combin-
ing them into a single score. This can quickly result in an agent
that focuses on levels that can be solved easily, resulting in a
local optimum that is difficult to escape. Therefore, the agent
may be incapable of finding strategies to solve more complex
levels without losing performance on the simpler ones.

To improve the flexibility of our agent we split the level
set of our training data into multiple subsets, scoring the
performance on each of these subsets separately. For example,
a two-objective fitness function has been created by using the
win rate of the first 25 levels as the first objective while
the win rate of the remaining 25 levels yields the second
objective. More objectives can be created by splitting the
training level set into even more subsets. In the extreme

https://github.com/Razzorior/KekeCompetition
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Fig. 2: Results of the parameter optimization. Each band shows min, mean and max fitness values of 5 runs per optimization
algorithm. For multi-objective algorithms we averaged using the individuals with the highest overall win-rate per generation.
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Fig. 3: Distribution of optimized weights per heuristic given the best agents found during parameter optimization.

case, each level represents its own objective. By using multi-
objective optimization, we can ensure that we also explore
parameter combinations that are solving different level sets.
Therefore, allowing the agent to explore multiple solving
strategies at the same time. Combining these strategies may
result in a well-rounded agent capable of performing well on
a variety of levels, rather than just focusing on the easiest
ones. To compare with the agents found by the single-objective
optimization algorithms, we choose the agent with the best
overall win rate as the final solution.

The experiments for the multi-objective approach consisted
of the NSGA-2 [18] and NSGA-3 [19], [20] algorithms. The
parameters for the different algorithms were chosen so that
every algorithm was trained with 200 fitness evaluations so
that the results are comparable and no algorithm was preferred.
The initialization of each algorithm differs by the number
of levels used per objective. For example, 25 levels of the
training set were used per objective for the algorithm instance
NSGA-2-25, whereas NSGA-2-10 uses 10 levels per objective,
respectively. For NSGA-3, we generated reference directions
using the Das-Dennis method [21].

NSGA-3-10 had the best mean performance of all the multi-
objective approaches whereas NSGA-2-5 had the worst mean
performance. However, the end results of the different problem

instances lie in a range of 100 points. It can be seen that
the noise in the NSGA-2 problem instances is greater than
in the NSGA-3 instances. Furthermore, it is shown that the
noise within the NSGA-2-10 and NSGA-2-5 instances is the
biggest. This confirms our expectations because the NSGA-2
algorithm has problems with more than two objectives.

Once again, we evaluated the best parameter combinations
found by each algorithm. This time a total of 24 agents
were considered (5 algorithms, 5 repetitions each). Figure 3b
shows the distribution of each parameter in the optimized
parameter sets. Similar to the parameters of the optimized
single-objective agents only a few weights had clear directions
(w3, w10, w11, w13).

C. Comparison of Results

Taking all optimization algorithms into account, the best
mean performance after 200 fitness evaluations has been
achieved by the genetic algorithm. It shows slightly better
performance than algorithms of both the single- and multi-
objective approaches. In comparison between these two, we
can see that the variance of single-objective instances is
smaller than the variance of the multi-objective ones.



Training Levels Test Levels All Levels
Agent Win Rate Avg. Iter Avg. Time Win Rate Avg. Iter Avg. Time Win Rate Avg. Iter Avg. Time

GAFullSet 82.0% 898 2.13s 69.4% 1568 3.41s 72.82% 1386 3.06s

KekeCompetition 72.0% 929 3.34s 72.0% 1047 3.47s 72.00% 1015 3.44s
BOFullSet 78.0% 928 2.45s 69.4% 1298 3.37s 71.74% 1197 3.12s
BOTrainSet 78.0% 953 2.42s 69.4% 1361 3.32s 71.74% 1250 3.08s

GATrainSet 82.0% 822 2.07s 67.2% 1585 3.60s 71.22% 1378 3.18s

Default 70.0% 1776 3.47s 58.2% 2191 4.47s 61.41% 2078 4.20s
DefaultFixed 66.0% 2166 4.02s 57.5% 2504 4.50s 59.81% 2412 4.37s

BFS 62.0% 4121 4.00s 54.5% 4774 4.80s 56.53% 4597 4.58s
DFS 58.0% 1924 4.55s 50.7% 2132 5.34s 52.68% 2075 5.13s

TABLE II: Comparison of the different agents averaged over 10 runs per level set. The best result is highlighted in bold.

VI. COMPARISON WITH STATE-OF-THE-ART AGENTS

For our final comparison against other Baba is You agents,
we repeat the optimization process using the GA algorithm
and the full budget of 10000 iterations and 10 seconds per
level. Furthermore, we compare two versions of our agent.
GATrainSet uses the 50 training levels during optimization
and runs for 100 generations, and GAFullSet has access to all
183 levels during optimization and is trained for 50 iterations.
Both have been shown to converge at the end of training. As an
alternative optimization scheme, we also made use of Bayesian
optimization. For comparison, we also report the results of
optimizing the parameters based on the set of training levels
BOTrainSet and the full level set BOFullSet.

We then compare our optimized agents to the baseline
agents provided in the Keke AI framework as well as the win-
ning entry of the Keke AI Competition 2022. The framework
includes a depth-first search, a breadth-first search, and a more
complex agent, called Default. The latter has been used as a
solver in the context of the mixed-initiative level editor Baba
is Y’all [13]. The Default agent of the framework performs
an exhaustive search that uses a heuristic to prioritize its node
expansion. The score consists of three functions representing
different distance measurements to other objects in the level
(similar to the ones in Section IV-A2). The first heuristic
calculates the average distance of players to the win object, the
second the average distance of players to interactable words,
and the last the average distance between players and objects,
which have the push trait.

However, we found two major bugs in the implementation of
the default agent. The first is related to the distance calculation
of the three sub-heuristics. Here it is not taken into account
that there are levels in which no goals or pushable objects
exist in every state and this is not caught when forming
the average distance, resulting in a division by zero. This
completely disables the heuristics for these types of levels and
turns the agent into a brute-force agent. The second bug has
to do with sorting the children in the queue. The standard
.sort() Javascript function is used here, which converts the
elements into strings, then compares their sequences of UTF-
16 code unit values. However, this sorts a value of 11 below
a value of 2, for example. This bug only affects the sorting
of the queue if the map has a certain size so that the average

Euclidean distance can be larger than 10 in the first place.
Surprisingly, the agent performed worse when fixing these
bugs (cf. Default and DefaultFixed in Table II), which is
why they could be ignored.

The best entry of the KeKe AI Competition, here called
KekeCompetition, generates random solution paths. During
the execution of the algorithm, these paths will be mutated
as in evolutionary algorithms. The mutation operator splits
the action sequence of individuals into multiple sub-strings
and swaps them between individuals. The algorithm runs until
a solution is found. Because of the nondeterministic nature
of the algorithm, we calculated averages over 10 runs to
determine the average performance of the algorithm.

Table II shows the mean performance of each agent on the
levels of the train and the test set, as well as their aggregated
performance over the full set. The standard deviation is mostly
negligible since all used algorithms are deterministic. Only
slight perturbations in the CPU time caused agents to lose
complex levels due to a timeout that they would otherwise
have won.

The best agent during our evaluation has been the
GAFullSet agent with an overall win rate of 72.82% over
all 183 levels. This does not come as a surprise, since it is
specifically optimized to solve the given level set. However, the
KekeCompetition agent, the GATrainSet agent, and the two
BO agents have been close competitors. The KekeCompetition

agent achieved a win-rate of 72.00%, a difference of 1.5 levels
than the best agent, the two BO agents had a win-rate of
71.74%, and the GATrainSet achieved a win-rate of 71.22%.
The Default as well as the simple search-based agents achieved
win rates ranging from 61.41% to 52.68%.

Moreover, the data of Table II shows that in comparison
to the other agents the GA-optimized agents required the
least computation time. This especially holds for levels of the
training set, in which the proposed agents solved the levels
in fewer iterations than other agents. Furthermore, we can see
that the performance of our proposed agent degrades when
applied to the test levels. Since this holds for both training
schemes (FullSet and TrainSet) we assume that this difference
can mostly be attributed to the varying difficulty of included
levels in the train and test set.



VII. CONCLUSION

In this work, we proposed a single-heuristic search-based
agent for solving Baba is You levels. The agent combined
multiple heuristics into a single value. The weighting of these
heuristics is optimized by several evolutionary algorithms. To
speed up computation time, each sub-heuristic can be excluded
entirely from the evaluation. This ensures that complex sub-
heuristics are only included if they benefit the agent’s perfor-
mance. Our evaluation showed slight performance improve-
ments to existing Baba is You agents. Its strongest competitor
also uses a combined heuristic function with a different search
scheme. In the future, it would be interesting to see if the
combination of the heuristic-function optimization using other
optimization schemes or a more sophisticated combination of
the different heuristics could result in an even better agent.

While our agent has already shown to solve many levels
of the Keke AI competition, there are different aspects that
have room for improvement. In the following, we plan to
further expand on the optimization of heuristics. In this work,
evolutionary algorithms have been used to tune the weights
of a given set of heuristics. Next, we plan to learn entirely
new heuristics to further enhance the generality of our agent.
Furthermore, combining information on the state space graph
or the sub-graph explored by the search algorithm with rein-
forcement learning techniques may allow the identification of
heuristics and abstractions using self-play [22].

At the same time, we want to explore the use of our
heuristics in a multiple heuristic search process such as
Multiple Heuristic Greedy Best-first Search [23], Independent
Multi-Heuristic A [24], portfolio-based search algorithms [25]
and the Feature Space Search algorithm (FESS) [12]. Those
have already been shown to perform well in their respective
domains as long as the set of heuristics has been selected
carefully.
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