IEEE Copyright Notice

Copyright (© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works by sending a request to pubs-permissionsQieee.org.

Deep Reinforcement Learning for Autonomous Driving using
High-Level Heterogeneous Graph Representations

Maximilian Schier!, Christoph Reinders! and Bodo Rosenhahn'

Abstract— Graph networks have recently been used for
decision making in automated driving tasks for their ability
to capture a variable number of traffic participants. Current
high-level graph-based approaches, however, do not model the
entire road network and thus must rely on handcrafted features
for vehicle-to-vehicle edges encompassing the road topology
indirectly. We propose an entity-relation framework that in-
tuitively models the road network and the traffic participants
in a heterogeneous graph, representing all relevant information.
Our novel architecture transforms the heterogeneous road-
vehicle graph into a simpler graph of homogeneous node and
edge types to allow effective training for deep reinforcement
learning while introducing minimal prior knowledge. Unlike
previous approaches, the vehicle-to-vehicle edges of this reduced
graph are fully learnable and can therefore encode traffic rules
without explicit feature design, an important step towards a
holistic reinforcement learning model for automated driving.
We show that our proposed method outperforms precomputed
handcrafted features on intersection scenarios while also learn-
ing the semantics of right-of-way rules.

I. INTRODUCTION

In recent years, model-free approaches for decision mak-
ing in automated driving have enjoyed growing success,
with research focusing on various methods of reinforcement
learning (RL) for problems like unsignalized intersection
navigation [1], [2]. A fundamental problem for RL in au-
tomated driving remains finding a suitable representation of
the environment that is both abstract enough to generalize
well to scenarios not seen during training as well as of the
required expressiveness.

Graphs have been used previously to represent traffic
participants in automated driving [3], [4], [5], [6], as partic-
ipants can intuitively be modeled as nodes. The advantages
of graphs are well-known: they are both abstract, contain
little redundant information compared to, for example, bird-
eye view images, are permutation invariant, and support an
arbitrary number of participants compared to, for example,
vector representations [3], [7]. The choice of edges con-
necting vehicle nodes is, however, less natural with both
the question of which vehicles to connect and which edge
features to select depending on the scenario to be solved.

The applicability of graphs is not limited to modeling
vehicles. They can naturally express the underlying road
networks, for example by setting a node at every lane joint of
the road network and connecting with edges such that every
edge is a drivable connection. Such graph representations
are in fact already used for road networks in the simulator
SUMO [8], that is employed in many recent works [1], [9],

Leibniz University Hannover, Institute for Information Processing
{schier, reinders, rosenhahn}@tnt .uni-hannover.de

O Road node
© Vehicle node
—> Drivable edge
Right-of-Way edge

Vehicle-Road edge '

-

Fig. 1: Our proposed representation models full road topol-
ogy and vehicles in a heterogeneous directed graph. Road
nodes are connected through drivable or relational edges and
vehicles linked to two road nodes to represent their position
on their connecting drivable edge. This heterogeneous graph
is then transformed by our framework into a simpler vehicle
graph with learnable edges based on the connecting routes
between vehicles. Here, the ego vehicle (light green) must
safely join the prioritized road by adjusting velocity.

[10]. Despite this natural mapping from the road network to
a graph, previous research has skipped modeling the road
on top of the vehicle graph and instead opted to include
road topology in the form of handcrafted features on the
vehicle-to-vehicle edges [3], [4], [5]. While such feature-
crafting allows in principle easier training of an RL agent
on the scenarios the features were designed for, it is still
desirable to have the agent deduce semantics from the entire
road topology for general applicability and to move towards
a holistic reinforcement agent comprising all situations in
automated driving. In this paper, we propose joining the
vehicle and road topology together into a heterogeneous
graph, containing both the road nodes and road network
edges, as well as the vehicle nodes. We omit the vehicle-
to-vehicle edges, as such edges must rely on precomputed
features like relative velocity, relative position [3], the inverse
of a Mahalanobis distance, or the type of relation between
vehicles, i.e. whether they are crossing or following [5]. Such
features are chosen specifically for the task at hand, and
do not necessarily generalize to different scenarios. Instead,
we express the vehicle position relative to the road network

and only add vehicle-to-road edges. An illustration of the
whole heterogeneous graph is given in Fig. 1. A problem
remains the complexity of the graph and the number of graph
convolutions required to exchange information between ve-
hicles, as it is difficult to train an agent that requires multiple
message-passing steps in the graph. Therefore, we propose a
novel framework and network architecture that is capable
of learning useful vehicle-to-vehicle edges by reducing a
heterogeneous vehicle-road graph to a tree with learned edge
features.
The main contributions of our work are:

« We propose, to the best of our knowledge, the first
graph-based environment representation for automated
driving containing the entire road topology and vehicle
information in a heterogeneous high-level graph

« We introduce a new model architecture for reducing the
complexity of such a graph representation to levels suit-
able for reinforcement learning by folding the vehicle-
to-vehicle paths into learnable vehicle-to-vehicle edges

« We train multiple agents based on our representation and
model using reinforcement learning and show that our
model is able to both generalize and learn the inherent
right-of-way rules while outperforming precomputed
relative vehicle-to-vehicle features

« Upon acceptance, we release the source code and con-
figuration of our model and used environments

II. RELATED WORK

Reinforcement learning for high-level driving can be cate-
gorized into different levels of cooperativeness between vehi-
cles and different key scenarios. For uncooperative scenarios,
all agents but the ego agent execute a fixed policy that
generally obeys traffic rules like right-of-way but otherwise
ignores the ego agent. For cooperative scenarios, agents are
controlled by a jointly-learned policy to optimize a metric
like average flow rate. While this work learns a policy for
an uncooperative environment, due to its focus on the novel
architecture and representation we will briefly outline related
work from both domains.

For uncooperative lane-changing and on-ramp merging,
Wolf et al. [14] propose training a deep Q-network (DQN)
using a relational grid encoding. The vehicles and road
topology surrounding the agent are encoded on a tabular
grid with each vehicle occupying a cell. The number of
vehicles is limited by the grid size. Huegle et al. [7] propose
using a deep set [15] to solve the same scenario while
being unbounded in the total number of observed vehicles
compared to a fixed size grid, and later refine their work to
support multiple object classes [10] and surrogate learning
[9]. Hart and Knoll [3] propose a graph representation
optimized for the scenario of lane-changing where vehicles
are encoded as vertices and relative location as edges.

For the uncooperative crossing of unsignalized intersec-
tions, Kai et al. [2] formulate intersection navigation as a
multi-task problem, representing the intersection as a fixed-
size vector, thus limiting the number of observable vehicles.
Kurzer et al. [1] propose encoding the environment as

a vector of path segments, with each segment containing
precalculated current and future occupancy information. This
representation generalizes to unseen intersection layouts but
requires precomputation of the predicted occupancy infor-
mation for the entirety of the discretized look-ahead path.

Klimke et al. [5] propose a graph-based model for fully
cooperative intersection flow optimization, with graph nodes
representing vehicles and graph edges only connecting con-
flicts in the form of crossing and following relations. The
distance to the closest vehicle is encoded per vehicle as a
node value. In their follow-up work [4], the distance to each
conflicting vehicle is encoded as edge features.

Most other recent work on RL not focused on the repre-
sentation relies on fixed-size vectors, e.g. for merging [16],
unsignalized intersections [2], and lane-changing/highway-
driving [17], [18], rarely also convolutional neural networks
[19].

Graph networks have also been employed for low level
scene representation for automated driving. For example,
Gao et al. [20] propose an encoding of HD maps using
two graph networks, first aggregating the low level polygonal
object descriptors as polylines, which are then processed by
a second graph network to model high-level relationships.

III. APPROACH

We formulate the problem of vehicle control as a Markov
Decision Process (MDP). The agent’s goal is controlling
the ego vehicle’s speed while navigating through a given
scenario. During each time step, the agent chooses an action
using the current environment observation, receives a reward
based on current environment state and selected action, and
the environment is simulated until the next time point. Such
an MDP may be described as the tuple (S,.A4,7,R,Yy) with
the state space S, the action space A, the transition rate
function 7 : S x A — S, the reward function R : S x A — R,
and the discount factor y reducing future rewards.

The agent’s policy & maps from the set of available actions
for a given state to the probability of each action w: S x A —
[0,1]. The objective of the agent is maximizing the expected
total reward G over all future time steps # when starting from
an initial state with G = Y, E[Y'R(s;,a;)]. Let 0*(s',d’) be
the Q-value of the optimal policy for the next time step with
s'=7T(s,a), d" € A. Then the optimal Q-value for the current
state s and some action a is:

0" (s,a) = R(s,a) + ymaxyc 4 Q" (s',d). (1)

Deep Q-Learning approximates the optimal policy Q* using
a neural network Qg with learned parameters 6 which are
iteratively updated using the loss:

L= (r+ymaxyc4Q¢(s,a") — Qp(s,a))?)

minimizing the difference between predicted reward and the
sum of immediate reward and discounted future predicted
reward. The best action according to the learned policy 7g
can then be determined for a state s by argmax,. 4 Qg(s,a).

/‘| Vv,othcr

Advantage

1
ernl,?
\rr,cgo,l}

Edge Encoder
€41 other, 1 ‘W :
1

(FC FC JS{FC

road

Fig. 2: We transform the heterogeneous graph into a simpler vehicle graph with edges described by the connecting paths
between vehicles. Here, the situation from Fig. 1 is used as an example. Our proposed architecture encodes these paths using
an LSTM [11]. We construct a bipartite graph (in grey) from the edge encoding, the observed and ego vehicle information,
and road features. After transforming the graph using a GATv2 [12] convolution, a duelling DQN head [13] estimates the
action rewards. Concatenation is denoted with), all layers except the two final layers of the head use ReLU activations.

A. Environment Representation

To represent traffic participants on a road network, we
propose a novel heterogeneous graph representation. A het-
erogeneous directed graph G = (V,&, A, R) consists of a set
of vertices V, an edge relation £ C {(x,y) | (x,y) € V x V},
and vertex and relation types A and R, respectively. Each
vertex and edge is mapped to its respective type using the
type functions a:V — A and r: & — R. Such a graph is
easily extensible for new participant types, like vulnerable
road users. In this work, we model vehicles and road
topology. We denote v,; as the i-th vehicle node, v,; as the
i-th road node, e,; ; as the edge connecting from the i-th to
the j-th road node, and e,,; ; as the edge connecting from the
i-th vehicle to the j-th road node. Both nodes and edges have
additional attributes. Let v, ; be the attribute vector of the i-th
node of type f, edge attributes are notated accordingly.

For each vehicle node, the velocity in the current and
previous time step, maximum capable velocity, and state of
the left and right indicators are encoded. For each road node,
we encode the maximum allowed velocity and whether this
road node is a goal, which is only necessary for the agent
to estimate when it will receive a positive terminal reward.

For the vehicle-to-road edges, the encoding consists of
relative and absolute distance between vehicle and road node
and whether the vehicle is traveling towards or from the node.
For example, if a vehicle is 200m away from the previous
node and 50m from the upcoming node, the relative distances
would be 80% and 20%, respectively.

For road-road edges, we encode the type of edge and
the distance covered by the edge if it is of drivable type.
Drivable types are those edges the vehicle may travel along,
which are Continuation if a road segment is split into
multiple parts and LinkLeft, LinkRight, and LinkStraight for
junction links requiring the left indicator, right indicator, or
no indicator to be set during junction crossing respectively.

Unpassable types encode traffic rule limitations and are either
CrossingWithYield connecting from a junction point with
lower priority to a junction point with higher priority and
CrossingWithRightOfWay in the reverse direction since a
directed graph is formed. All attributes of the road topology
except goal information can be directly extracted from the
road map and are static, i.e. invariant to the state of all vehi-
cles. Thus the road graph can be efficiently initialized once
and be reused for every observation without modification.

All categorical features are encoded as binary class matri-
ces. Continuous features are normalized to a range of [—1, 1]
through division by 50ms~! for velocities and 200m for
distances, followed by clipping.

B. Graph Model

Given a heterogeneous graph of the ego and other vehicles
on a road network, a naive approach to predicting the Q-
values for each action would be graph folding with an
attention mechanism using a graph convolution with support
for edge features and heterogeneous nodes like GATv2 [12].
However, we have found that such an approach does not
yield good results as the multiple message-passing steps
combined with the sparse signal of the Q-learning loss
prevent learning to attend to correct nodes and features. This
may also be explained by the large mostly irrelevant space
of the environment representation for the control problem.

Therefore, we propose reducing the heterogeneous
vehicle-road graph to a tree of vehicles with maximum
height of one and the ego vehicle as root. For that, the
shortest path from each observed vehicle to the ego vehicle
is constructed using Dijkstra’s algorithm [21] with each road
node equally weighted except for edges along the route,
which have reduced cost. Such a path P connecting vehicle
nodes v, oher tO Vyep0 OVer road nodes with indices {1,...,n}
consists of the initial vehicle-to-road edge from the other
vehicle to a road node e, omher,1, then for every but the last

e

p— B

(§7) Basic Junction

(§2) Curved Junction

(S3) Junction Left Turn

(8§4) Junction Merge (8§5) Roundabout

Fig. 3: Scenarios used in the experiments on the SUMO simulator [8]. On junctions S/ through S4 two right-of-way variants
are used. On S5 merging traffic must always yield. The ego vehicle (light green) always starts on the same leg.

visited road node with index i the road node itself v,; and the
next road-road edge e,.; 1, followed by the final road node
vrn and the vehicle-to-road edge of the ego vehicle eyego

pP= (er,other,l 7Xr,1 79rr,1,27 ¥ 7grr,nfl,n?X}‘,n7gvr,eg0,n)(':‘j)
Road-to-road edges of the directed graph can be traversed in
both directions. To differentiate, we pad the feature vector
to twice its size with zeros either in front or back depending
on the direction of travel. P is split into the fixed length start
and end, and variable length center section. The dynamic part
of P is encoded by an LSTM [11] with ReL.U activation to
a fixed-size vector. With the segment encoders f(-), g(-),
h(-), and output encoder o(-) consisting of a learnable affine
transformation followed by a ReLU, the edge encoding y is:

Y = o([f (€urother,) [[XI 1 ([¥:]|€7g0,4])]), With)
X= LSTM(g([Xr,l | |§rr,1,2])7 te ’g([yr.n—l | ‘er,n—l,nb)' (5)

Here, [||-] marks concatenation. In this way, we create a
similar graph to previous work using graph networks with
reinforcement learning for vehicle control [3], [5], however,
instead of situation-dependent handcrafted edge features
our approach uses implicitly learned features describing
the vehicle-to-vehicle relations. To encode the entire scene,
we construct a bipartite graph. The concatenation of ego
vehicle and road features is the destination node. Each
observed vehicle’s features concatenated with its encoded
edge features is a source node. For our proposed framework,
forward road information is encoded as the current forward
road node of the ego vehicle concatenated with the average
feature of all succeeding road nodes, as we have found this
sufficient. The road nodes may, however, also be integrated
as a separate reduced graph similar to the observed vehicles if
required. Source and destination node values are transformed
with a fully connected layer respectively and the graph is
convolved once using the GATv2 [12] operator with five
heads. We concatenate orignal and convolved features of the
destination node, as self-links are not used on the bipartite
graph. An affine transform is applied and a standard duelling
head [13] consisting of two fully connected layers with
ReLU activation for both the advantage and value calculation
estimates Q, the vector of Q-value per action.

C. Observed Vehicles

We set the vision radius of the ego vehicle to 100 m.
All vehicles outside this radius are not observable and not

included in the environment representation. As noted by
previous work [10], the complexity of graph representations
should be kept minimal to reduce computational effort.
Therefore, we propose limiting the set of observed vehicles
to vehicles that are reachable through a floodfill with limited
depth on the road graph. Starting from the ego vehicle’s
node, all road nodes are added to the flood fill frontier if
the connecting edge is vehicle free. If vehicles are on the
connecting edge, the closest one is added to the observation
space, but the following road node is not added to the frontier
of the flood fill. We later show in an ablation study that our
agent performs well with both this approach and all vehicles
observed.

D. Reward and Actions

The reward function r(-) should encourage safe and com-
fortable driving while completing the episode quickly. We
design r(s,a) for the next state s given an action a as:

r(s,a) = rcollision(s) ~+ Tsuccess (S) + T'velocity (S) =+ Facceleration (a)

(6)
The terminal transitions for collision and completion of an
episode are rewarded with a full positive or negative reward:

Fcollision (S) = —1cotision (S) (N
T'success (5) = Tuccess (S) ¥

Driving at a slower speed v than the allowed speed Vvyjiowed
is penalized:

Fvelocity (S) = —ky- maX(07 Vallowed — V) 9
and any acceleration is penalized for smooth driving:

(10)

racceleration(a) =—ky- ‘al

We set k, =0.001 and k, = 0.0002 in all experiments, these
values were empirically determined.

The agent controls the longitudinal velocity of the ego
vehicle by selecting one of the three discrete accelerations
+3ms~2, 0ms 2, and —3ms~2 per time step.

IV. EXPERIMENTS

Experiments are conducted on the five scenarios shown
in Fig. 3, which are based on Kurzer et. al. [1] with an
additional roundabout. Note, however, that the results are
not directly comparable due to the difference in traffic
rules, environment setup, and the statistical methods used

TABLE I: Interquartile mean of the performance using our learnable edge features compared to precomputed edge features on
all scenarios. Best results highlighted in bold. Improvements on training sets are significant with p < 0.05. Our architecture
performs better in success rate (SR) and collision rate (ETR) both on seen training and unseen evaluation scenarios.

Training Evaluation
Edge Features | SR [%] 1 CI95 SR [%] ETR [%]] CI95 ETR [%] | SR [%] T CI95 SR [%] ETR [%]] CI95 ETR [%]
Precomputed 94.57 [94.15, 94.87] 5.36 [5.05, 5.71] 81.67 [78.91, 83.55] 17.94 [16.06, 19.89]
Learned (ours) 95.76 [95.36, 96.19] 4.18 [3.75, 4.58] 83.17 [79.61, 85.93] 16.54 [13.88, 19.76]

for evaluation. For the simulation of the environment, the
traffic simulator SUMO [8] is used as in previous works [1],
[7], [10]. The ego vehicle always starts on the same road
segment as shown in Fig. 3, whereas the traffic flow on all
other routes is randomly spawned. The agent’s goal is to exit
opposite to the entry, with the exception of S3, where it must
turn left. For scenarios S/ to $4, we employ two variants, one
where the ego vehicle’s road is prioritized, and one where
it must yield. If the ego vehicle has to yield, other vehicles
ignore any vehicles, such that SUMO’s driver model enforces
right-of-way by causing a collision, similar to previous work
[1]. This is important to prevent the agent from exploiting
SUMO’s defensive default driver model. If, however, the
ego vehicle has right-of-way, other vehicles use the standard
SUMO driver model, which gives way. We simulate a macro
step length of 0.4 s by repeating the selected action four times
for 0.1s in the simulator. This step length is consistent with
previous work [1], but a smaller simulator step length is used
as we have found 0.4s to cause some collisions not to be
detected in SUMO allowing vehicles to completely move
through each other at some junction layouts within a time
step when driving quickly.

TABLE II: Hyperparameters for the training of the DQN

Parameter Value

Batch size 512

Replay buffer size 100,000

Gradient steps 2,000,000

Steps per gradient step 4

Optimizer Adam [22] (Ir=2-1073, B; = 0.9, B, = 0.999)
Discount factor y 0.9

Exploration probability &
PER parameters

1.0 linearly decaying to 0.02
o = 0.6, B linearly increasing from 0.4 to 1.0

A. Experimental Setup

The agents are trained similarly to the original DQN
[23], but use common enhancements like Double Q-Learning
[24] for more stable reward estimation, Duelling Q-Learning
[13] for generalized action reward estimation, and Prioritized
Experience Replay [25] to focus learning towards rare but
important transitions, such as collisions. An g-greedy strat-
egy with linear decay of the exploration probability € is used.
The hyperparameters are given in Table II.

The performance is analyzed using two established metrics
[1]. Success rate (SR) measures the rate of successfully
completed episodes over all episodes, and early termination
rate (ETR) the rate of early terminations through collision.
As episodes are also terminated after a maximum of 600
steps, SR and ETR do not always add up to 1.

B. Evaluation

Since many previous methods have not published their im-
plementation, we implement an agent using handcrafted pre-
computed features for comparison. This agent uses vehicle-
to-vehicle features in the form of relative position vector
and relative velocity vector in the ego vehicle’s reference
coordinate frame, an encoding motivated by previous work
[3]. The agent is based on our architecture from Fig. 2 for
better comparability, with the input path sequence replaced
by the relative features and our recurrent edge encoder re-
placed by three fully connected layers with ReLU activation
of dimensions 256, 128, and 16. This design is comparable
in the number of trainable parameters to our edge encoder.
The rest of the architecture is not modified.

First, we analyze overall performance of our proposed ar-
chitecture using learnable vehicle-to-vehicle edges compared
to the model using precomputed handcrafted features. For
each scenario, ten agents of each method are trained on
the other four scenarios. The performance is evaluated on
both the four scenarios seen during training and the held
out evaluation scenario. This approach is motivated by the
generalization experiments of Kurzer et al. [1]. We follow
current best practice [26] for reliable evaluation of RL-
methods and report the interquartile mean (IQM) over all
scenarios combined, which reduces uncertainty and elimi-
nates outlier runs. The 95% confidence interval is estimated
using stratified bootstrapping [26] with 50000 iterations, see
Table I for the results. Our proposed architecture outper-
forms the precomputed edge features in both metrics on
the training and evaluation performance, achieving 1.19 pp
better SR and 1.18 pp better ETR on the training sets.
The improvements on the training scenarios are significant
with p < 0.05, showing that the features learned by our
proposed architecture are more powerful in capturing the
vehicle relations than the precomputed relative distance and
velocity vector. Differences between S/ to S5 are large, with
only S3 containing a left turn, and S5 containing a right turn.
Therefore, generalizing to completely new behavior when
withholding one scenario during training is challenging. The
comparative method achieves 81.67% SR and ours completes
83.17% of episodes successfully. We refrain from carrying
out more repetitions to improve the p-values on the held out
evaluation set due to the high environmental impact and cost
of a large amount of training runs in reinforcement learning.

We test more gradual changes by rotating the ego ve-
hicle’s road in S4 counter-clockwise, thus increasing the
angle between the merging roads. All previously trained
agents are evaluated on the changed road geometry. The

100% A

e ——

Edge Features
—— Learned (ours)

80% -

60%

Precomputed
Metric
40%1 _— SRt
-—- ETR |
0% —_-=T O~L N ===
0% A T T T T T
20 40 60 80 100 120 140

Fig. 4: Increasing the merge angle in S4 causes a distribution
shift of observations. All agents are trained on the original
S4 with an angle of 15. Using precomputed edge features
leads to a collapse of behavior, whereas our learned features
generalize well to the unseen geometry.

results are presented in Fig. 4. The edge features learned by
our proposed method generalize well, with SR decreasing
slightly to 80% as the road geometry moves further away
from the training distribution. In contrast, the performance of
the agents with handcrafted precomputed features decreases
significantly, completing less than 30% of the episodes from
80 to 100. As the angle increases further ETR surpasses SR.
While more robust handcrafted features for generalizing on
intersections were proposed [1], [4], [5], this still highlights
the natural ability of our approach to implicitly learn well-
generalizing edge features.

Next, we analyze whether our architecture learns right-of-
way semantics from the representation. We simulate episodes
on all scenarios with two right-of-way variants (S/ to S4)
until we have 2000 relations per environment to other ve-
hicles approaching the junction in front of the ego vehicle,
thus 16000 relations total. For each trained architecture from
the main experiment, we train a single neuron on top of
the edge encoder using binary cross-entropy to predict the
right-of-way priority. Using a batch size of 512 only 1000
training steps are performed with the weights of the edge
encoder frozen. Our learned vehicle-to-vehicle edge encoders
achieve a near-perfect mean prediction accuracy of 99.5%,
the relative feature-based encoders 71.12%. These results are
significant with p < 0.01, showing our architectures ability
to extract semantically meaningful edge features.

C. Ablations and Variations

We study the influence of the graph convolution and
recurrent network used. The LSTM is substituted with an
Elman-RNN [27] and the GATv2 graph convolution with
the standard GAT convolution [28] as well as the SAGE
operator [29]. The edge encoder is also completely removed
(No Edges). Three agents of each architecture are trained
holding out S7. The IQM of all metrics is reported in Table
III. Removing the edge encoder from the architecture impairs
the SR and ETR drastically, showing the necessity of the
good vehicle-to-vehicle edges learned by our method for
high performance. All other configurations perform well,
with statistical noise causing some variance. This highlights
the robustness of our framework to the selection of these

TABLE III: The graph convolution and recurrent network are
substituted with different methods. Our framework is robust
regarding these changes. Removing the edge encoder com-
pletely (No Edges) leads to significantly lower performance.

Edge Graph Training Evaluation

Encoding Convolution SR 1 ETR | SR 1 ETR |
No Edges GATv2 56.75 % 1675 % | 6930 % 27.25 %
RNN SAGE 95.60 % 4.40 % 85.70 % 14.30 %
RNN GAT 94.75 % 525 % 87.00 % 13.00 %
RNN GATv2 94.55 % 5.45 % 89.20 % 10.40 %
LSTM SAGE 96.10 % 3.90 % 88.15 % 11.85 %
LSTM GAT 95.25 % 4.75 % 85.65 % 14.35 %
LSTM GATV2 95.30 % 4.70 % 88.65 % 11.35 %

TABLE IV: When removing the flood fill vehicle selection
from Sect. III-C, performance is comparably good, but
inference time increases slightly.

Vehicles Training Evaluation Inference
Observed SR 1 ETR | SR 1 ETR | Time |
Flood fill 9594 % 4.06 % 89.13 % 10.80 % 0.934 ms
All 9586 % 4.14 % 89.74 % 10.26 % 0.975 ms

operators. For the edge encoder, we attribute this to the short
length of the sequences fed to the RNN, thus an LSTM is not
required to prevent vanishing gradients. As the edge encoder
encodes a relation between ego and observed vehicle, which
is naturally a relative feature, the dynamic attention of
GATV2 is not strictly required and the framework performs
well using less attentive graph convolution operators.
Finally, we analyze the influence of the observed vehicles.
The reduction of vehicles through the flood fill from Sect.
II-C to increase the inference throughput is compared to
including all vehicles within the vision radius. The results
are shown in Table IV. The policy learned with all vehicles
observable performs similar to the one with our vehicle
selection. Thus, our architecture also works well when
having to attend to all vehicles. Limiting the vehicles to
those closest to the ego vehicle does not benefit the agent
through introduction of prior knowledge, which would be
undesirable, while increasing the inference throughput.

V. CONCLUSIONS

In this work, we presented a novel reinforcement learning
framework for automated driving operating on high-level
heterogeneous scene graphs representing road topology while
requiring minimal feature engineering and prior knowledge.
The experiments showed that our architecture generalizes
well to unseen road topology, learns semantic rules like right-
of-way, and outperforms precomputed vehicle-to-vehicle fea-
tures on intersection scenarios. Relations that previously
were expressed using handcrafted features depending on the
application, in particular vehicle-to-vehicle edge features, can
be implicitly learned with our method. We consider this an
important step in moving towards more holistic high-level
driving using graph networks. In the future, we want to
extend our approach to more scenarios than intersections and
plan to incorporate the vehicle-to-vehicle relations between
other vehicles.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

REFERENCES

K. Kurzer, P. Schorner, A. Albers, H. Thomsen, K. Daaboul, and
J. M. Zollner, “Generalizing decision making for automated driving
with an invariant environment representation using deep reinforcement
learning,” in 2021 IEEE Intelligent Vehicles Symposium (1V). 1EEE,
2021, pp. 994-1000.

S. Kai, B. Wang, D. Chen, J. Hao, H. Zhang, and W. Liu, “A
multi-task reinforcement learning approach for navigating unsignalized
intersections,” in 2020 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2020, pp. 1583-1588.

P. Hart and A. Knoll, “Graph neural networks and reinforcement
learning for behavior generation in semantic environments,” in 2020
IEEE Intelligent Vehicles Symposium (IV). 1EEE, 2020, pp. 1589—
1594.

M. Klimke, J. Gerigk, B. V6lz, and M. Buchholz, “An enhanced
graph representation for machine learning based automatic intersection
management,” ArXiv, vol. abs/2207.08655, 2022.

M. Klimke, B. V6lz, and M. Buchholz, “Cooperative behavior plan-
ning for automated driving using graph neural networks,” 2022 IEEE
Intelligent Vehicles Symposium (1V), pp. 167-174, 2022.

X. Ma, J. Li, M. J. Kochenderfer, D. Isele, and K. Fujimura,
“Reinforcement learning for autonomous driving with latent state
inference and spatial-temporal relationships,” 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6064-6071,
2021.

M. Huegle, G. Kalweit, B. Mirchevska, M. Werling, and J. Boedecker,
“Dynamic input for deep reinforcement learning in autonomous driv-
ing,” in 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 1EEE, 2019, pp. 7566-7573.

P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flotterod,
R. Hilbrich, L. Liicken, J. Rummel, P. Wagner, and E. Wiener, “Mi-
croscopic traffic simulation using sumo,” in 2018 21st international
conference on intelligent transportation systems (ITSC). 1EEE, 2018,
pp. 2575-2582.

M. Huegle, G. Kalweit, M. Werling, and J. Boedecker, “Deep surrogate
g-learning for autonomous driving,” 2022 International Conference on
Robotics and Automation (ICRA), pp. 1578-1584, 2022.

M. Hiigle, G. Kalweit, M. Werling, and J. Boedecker, “Dynamic
interaction-aware scene understanding for reinforcement learning in
autonomous driving,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2020, pp. 4329—-4335.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” in International Conference on Learning Representations,
2022.

Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning. PMLR, 2016, pp.
1995-2003.

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

P. Wolf, K. Kurzer, T. Wingert, F. Kuhnt, and J. M. Zollner, “Adaptive
behavior generation for autonomous driving using deep reinforcement
learning with compact semantic states,” in 2018 IEEE Intelligent
Vehicles Symposium (IV). 1EEE, 2018, pp. 993-1000.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Péczos, R. Salakhutdinov,
and A. Smola, “Deep sets,” in NIPS, 2017.

S. Triest, A. Villaflor, and J. M. Dolan, “Learning highway ramp
merging via reinforcement learning with temporally-extended actions,”
in 2020 IEEE Intelligent Vehicles Symposium (IV). 1EEE, 2020, pp.
1595-1600.

A. Alizadeh, M. Moghadam, Y. Bicer, N. K. Ure, U. Yavas, and
C. Kurtulus, “Automated lane change decision making using deep re-
inforcement learning in dynamic and uncertain highway environment,”
in 2019 IEEE Intelligent Transportation Systems Conference (ITSC).
IEEE, 2019, pp. 1399-1404.

A. Baheri, S. Nageshrao, H. E. Tseng, I. Kolmanovsky, A. Girard,
and D. Filev, “Deep reinforcement learning with enhanced safety
for autonomous highway driving,” in 2020 IEEE Intelligent Vehicles
Symposium (1V). 1EEE, 2020, pp. 1550-1555.

U. Yavas, T. Kumbasar, and N. K. Ure, “A new approach for tactical
decision making in lane changing: Sample efficient deep q learning
with a safety feedback reward,” in 2020 IEEE Intelligent Vehicles
Symposium (IV). 1EEE, 2020, pp. 1156-1161.

J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid,
“Vectornet: Encoding hd maps and agent dynamics from vectorized
representation,” 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 11522-11530, 2020.

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269-271, 1959.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2015.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep rein-
forcement learning,” CoRR, vol. abs/1312.5602, 2013.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double g-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experi-
ence replay,” CoRR, vol. abs/1511.05952, 2016.

R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. G.
Bellemare, “Deep reinforcement learning at the edge of the statistical
precipice,” in NeurlPS, 2021.

J. L. Elman, “Finding structure in time,” Cogn. Sci., vol. 14, pp. 179—
211, 1990.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in International Conference
on Learning Representations, 2018.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

