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Abstract
Optimizing neural networks with noisy labels is a
challenging task, especially if the label set con-
tains real-world noise. Networks tend to generalize
to reasonable patterns in the early training stages
and overfit to specific details of noisy samples in
the latter ones. We introduce Blind Knowledge
Distillation - a novel teacher-student approach for
learning with noisy labels by masking the ground
truth related teacher output to filter out potentially
corrupted ‘knowledge’ and to estimate the tipping
point from generalizing to overfitting. Based on
this, we enable the estimation of noise in the train-
ing data with Otsu’s algorithm. With this estima-
tion, we train the network with a modified weighted
cross-entropy loss function. We show in our ex-
periments that Blind Knowledge Distillation detects
overfitting effectively during training and improves
the detection of clean and noisy labels on the re-
cently published CIFAR-N dataset. Code is avail-
able at GitHub1.

1 Introduction
Learning with noisy labels is a challenging task in image
classification. It is well known that label noise leads to
heavy performance drops with standard classification meth-
ods [Song et al., 2022]. The goal of learning with noisy la-
bels is therefore to train a classification model with labelled
training images and achieve high classification performance
on unseen test images, even if the labels for training are noisy
and corrupted. Labels are noisy because humans are natu-
rally unable to classify images perfectly due to ambiguous
images, individual human bias, pressure of time, or various
other reasons. Many modern methods [Liu et al., 2022b;
Rawat and Wang, 2017] are trained on large and potentially
noisy datasets and thus it is an interest of the community to
make classification robust against noisy labels.

To evaluate the robustness of methods for learning with
noisy labels, clean image datasets like CIFAR [Krizhevsky
and Hinton, 2009], Clothing1M [Xiao et al., 2015], or We-
bVision [Li et al., 2017] are synthetically corrupted by ran-

1https://github.com/TimoK93/blind knowledge distillation

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

µ1 s µ2

P (y = y|x)

n

Noisy Labels
Clean Labels

Otsu Distributions

Figure 1: Distribution of ground truth label related
probabilities PA(y = y|x) at beginning of overfitting (tipping
point) and the resulting gaussian distributions after Otsu’s algorithm
for the dataset Worst. Red bars show the normalized distribution
of noisy labels and green bars of clean labels, respectively. Note
that the gaussian distributions (blue) are scaled for visualization
purposes. Our presented Blind Knowledge Distillation enables an
adaptive noise estimation via the thresholds µ1, s, and µ2 and a
robust learning with noisy labels.

domly flipping label annotations either symmetrically with-
out constraints or asymmetrically with predefined rules to
mimic realistic label noise. However, Wei et al. [2022] shows
that synthetic label noise has different behaviour compared to
real-world label noise and is thus not an ideal choice to eval-
uate robust learning. To close this gap, Wei et al. have made
great efforts and presented CIFAR-N with multiple newly an-
notated ground truth labels for CIFAR with human-induced
label noise. With these new annotations, robust learning can
be evaluated more realistically.

In this paper, we introduce a novel method to detect the be-
ginning of overfitting on sample details during training, that is
usually roughly estimated as in [Li et al., 2020], and present a
simple but effective method to detect most likely corrupted la-

https://github.com/TimoK93/blind_knowledge_distillation


bels. Our method is inspired by Knowledge Distillation [Hin-
ton et al., 2015] for neural networks which extracts ‘knowl-
edge’ from a teacher network to train a student network.
Differently than usual, our student network is just trained
with a subset of the teachers ‘knowledge’. Specifically, it
does not ‘see’ the ‘knowledge’ about the given and poten-
tially corrupted ground truth labels by utilizing the teachers
ground truth complementary logits. Therefore we call it Blind
Knowledge Distillation. Based on the detected noisy labels,
we propose a simple but effective loss-correction method to
train the teacher model robustly with label noise. We perform
extensive experiments on CIFAR-10N and the results show
that Blind Knowledge Distillation

• successfully estimates the tipping point from fitting to
general patterns to (over)fitting to sample details,

• is an effective method to estimate the likelihood of labels
being noisy,

• and improves the classification accuracy while training
with high noise levels.

2 Related Work
Methods in the field of robust learning to tackle noisy labels
can be divided into label correction, loss correction, and re-
fined strategies [Song et al., 2022; Wang et al., 2019]. In this
section, we contextualize the latest methods of the CIFAR-N
leaderboard based on the aforementioned categories.

Label correction is an approach in which the given ground
truth labels are dynamically changed during optimization to
obtain labels of higher quality. SOP [Liu et al., 2022a] per-
forms label correction by optimizing the ground truth labels
with Stochastic Gradient Descent (SGD) w.r.t. the classifica-
tion loss. It alternates between the update of model weights
and the update of additional soft-label weights.

Another approach is loss correction which is usually ap-
plied by weighting the loss term or adding a new loss for each
sample in the training dataset. The methods CORES [Cheng
et al., 2021] and ELR [Liu et al., 2020] add a regularization
term to the standard cross-entropy (CE) loss to penalize likely
corrupted labels. PeerLoss [Liu and Guo, 2020] introduces
and minimizes peer loss functions between randomly selected
samples. CAL [Zhu et al., 2021] extends this approach and
estimates the covariances between noise rates and their bayes
optimal label.

The last category tackles noisy labels by using refined
strategies. CoTeaching [Han et al., 2018] trains a neural net-
work with samples with high confident predictions of a sec-
ond network, and vice versa. DivideMix [Li et al., 2020] and
PES [Bai et al., 2021] split the dataset in clean and corrupted
subsets and apply semi-supervised learning methods. In de-
tail, DivideMix trains two independent neural networks and
splits the set of one network based on the predictions of the
other network to avoid confirmation bias. In contrast to this,
PES applies early stopping of the optimization to every net-
work layer independently, instead of applying it to the whole
network simultaneously, as usual.

Our method combines a refined strategy to detect most
likely corrupted labels in the first stage and performs loss-

correction in the second stage while incorporating the esti-
mation of likely corrupted labels. While other methods man-
ually define warm-up epochs, we adapt to the dataset and esti-
mate the optimal stopping point for the standard CE training.
Instead of applying extensive semi-supervised augmentation
methods, we apply a simple sample dependent loss correc-
tion.

3 Preliminaries
Given a set of annotated image samples X and a set of
classes C, the task of image classification is to assign ev-
ery sample x from (x, y) ∈ X to the correct class label
y = c ∈ C without prior knowledge of the correct class la-
bel y and a potentially noisy annotation y. Modern methods
use neural networks f(Φ, x) to estimate the probability dis-
tribution P (y = c|x) for every class c [Liu et al., 2022b;
Li et al., 2020; Liu et al., 2022a; Cheng et al., 2021;
He et al., 2016a], in which Φ denotes a set of trainable net-
work parameters. More specifically, neural networks predict
a logit vector ~l ∈ R|C| with a logit lc for every class and
transform it into probabilities with the softmax function

P (y = c|x) =
elc∑
i∈C e

li
. (1)

Finally, the class c with the highest probability P (y = c|x) is
assumed to be the correct label y.

The task is to define the network architecture of f and the
training strategy to optimize Φ, so that f(Φ, x) predicts a sat-
isfying distribution P (y = c|x) in which the correct class has
the highest probability. Most methods optimize Φ with large
manually annotated image datasets and minimize the categor-
ical cross entropy (CE) loss objective

LCE =
1

|X|
∑

(x,y)∈X

− log
(
P (y = y|x)

)
(2)

or one of its derivatives.
Extending the task of image classification, the challenging

task of learning with noisy labels addresses the problem that
the given ground truth labels y could be noisy and not the true
labels y 6= y. False ground truth labels dramatically impede
the optimization of Φ. Thus, the goal is to train classifiers
with an accuracy that is comparable to classifiers that would
be optimized with clean labels y = y. A second goal is to
identify noisy labels y 6= y in the dataset.

The approach proposed in this paper addresses both tasks.
Note that the method is iteratively trained with random sam-
pled batches X ′ ⊂ X . We keep the notation of X in the next
sections for simplicity, e.g. in Eq. (3).

4 Method
To enlarge the robustness of neural networks against label
noise and to detect noisy labels, we present a novel training
strategy to estimate the likelihood of every label being noisy
and apply a weighted loss based on this.

First, we adapt the student-teacher architecture [Gou et
al., 2021] and introduce Blind Knowledge Distillation to ex-
tract generalized patterns from the data. Then, we present
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Figure 2: Our proposed Blind Knowledge Distillation framework. The teacher and student network share the same topology but have
different weights. While the teacher network is trained by optimizing the standard CE loss, the student network is trained with the ground
truth complementary logits of the teacher network and the mean squared error loss. The teacher network predicts the class membership
probabilities PT (y = c|x) and the student network predicts the probabilities PS(y = c|x).

a method to detect the beginning of overfitting with the stu-
dent network and enable the detection of noisy labels by es-
timating four confidence levels of being noisy. Finally, we
optimize Φ with a robust training strategy to train the final
classifier. All three steps are described in the following sec-
tions.

4.1 Blind Knowledge Distillation
Neural networks with large number of parameters Φ can
memorize the training examples, so that P (y = y|x) ≈ 1 for
every sample x in the training set X . Also, neural networks
adapt simple patterns during the early optimization epochs
and overfit to specific image details in the latter ones. As
shown in [Liu et al., 2020], valid patterns are learned by max-
imizing the logit ly=y for clean samples in the first training
stages. Subsequently to this early generalization, maximiz-
ing the logits ly 6=y of corrupted samples degrades the clas-
sification accuracy. More important for this method is the
phenomenon that the ground truth complementary logits lc6=y
are also minimized in the latter stages.

To avoid the maximization of ly 6=y for noisy labels, we cre-
ate a new student-teacher architecture, in which the student
only learns generalized patterns. In the student-teacher archi-
tecture, a student model is trained with the output of a teacher
model. This method is called Knowledge Distillation [Hin-
ton et al., 2015] and transfers the patterns that are encoded
in the teacher model to the student. Model bias or wrong
patterns from the teacher can also be transferred. To avoid
this undesired transfer, we introduce the ground truth anno-
tation complementary ‘knowledge’ by removing all informa-
tion that is immediately connected to a potentially corrupted
ground truth label y.

Unlike the usual knowledge distillation architecture, our

models share the same topology f(Φ, x) but have different
weights ΦT (teacher) and ΦS (student). The teacher model
f(ΦT , x) is trained with the standard CE loss (Eq. (2)). The
student model is trained with the unlabelled ground truth
complementary logits lTc6=y derived from the teacher model
and an extended but simple mean squared error loss

LStud =
1

|X|
∑

(x,y)∈X

1

|C| − 1

∑
c∈C
c6=y

(lTc − lSc )2 (3)

in which lSc denotes the logits of the student model. This loss
function transfers the generalized patterns by imitating the
output of the teacher model but without taking the potentially
corrupted ground truth label y into account. The training ar-
chitecture is visualized in Fig. 2.

Since high valued complementary logits lc 6=y are min-
imized in the latter optimization stages after general fea-
tures are learned, also the resulting probabilities after
softmax (Eq. (1)) converge to a uniform distribution. Thus,
we can identify approximately the training epoch, in which
the neural network starts overfitting to specific sample details
by monitoring the mean maximal probability

p̂max =
1

|X|
∑
x∈X

max
c∈C

(
P (y = c|x)

)
(4)

of the students network. During training in epoch i, the
fitting-epoch in which p̂imax is maximal can be certainly iden-
tified online with a delay of k epochs by checking if p̂i−kmax is
the maximum of the last 2k + 1 epochs.

Furthermore, it shows that the student model has the
ability to classify images comparable to the teacher model
before the detail fitting starts. Thus, we modify our fi-
nal classification probability by combining the teacher’s



prediction PT (y = c|x) and the student’s prediction PS(y =
c|x) to the agreement probability

PA(y = c|x) =
PT (y = c|x) · PS(y = c|x)∑
i∈C PT (y = i|x) · PS(y = i|x)

. (5)

PA enables the noise estimation in the dataset described in the
following. The classification accuracy PT , PS , and PA are
elaborated more in detail in the experiments (see Sec. 5.4).

4.2 Adaptive Noise Estimation
The knowledge about the presence of noise can be used to
apply loss correction. Unfortunately, this knowledge is not
given, so we estimate the probability of a data sample to be
noisy. We split the dataset into four subsets based on Otsu’s
algorithm [Otsu, 1979], in which the membership to a sub-
set indicates the likelihood of being noisy. Given a set of
data samples (x, y) ∈ X with their corresponding agreement
probability PA(y = y|x), the first step is to find a threshold
s that splits X into two distributions X1 = {x ∈ X|PA(y =
y|x) ≤ s} and X2 = {x ∈ X|PA(y = y|x) > s}, in which
X1 contains images with likely noisy and X2 images with
likely clean labels. To find s, we assume that X1 and X2 can
be approximated by two gaussian distributions (µ1, σ1) and
(µ2, σ2). The optimal threshold s maximizes the objective

Q(s) =
n1(s)

(
µ1(s)− µ

)2
+ n2(s)

(
µ2(s)− µ

)2
n1(s)σ1(s)2 + n2(s)σ2(s)2

, (6)

where n1(s) and n2(s) denote the cardinality of X1 and X2

depending on s, and µ is the mean probability PA(y = y|x)
of all samples in X . The optimal s minimizes the inter-class
variance and can be found by calculating Q(s) for all s with
a reasonable step size ∆s = 0.001.

Using Otsu’s algorithm, we preserve a threshold s to split
the data into noisy and clean samples, and furthermore thresh-
olds µ1 and µ2 to subdivide the subsets into more fine-grained
subsets. A finer distinction w.r.t. the likelihood of being noisy
allows a more precise weighting of the samples in the follow-
ing steps. Depending on the requirements of the application,
the task of label noise detection can be solved by classifying a
sample x by comparing PA(y = y|x) with one of the thresh-
olds s, µ1, and µ2. While using µ1 is more liberal to classify-
ing noisy labels into the clean dataset than s, µ2 is more con-
servative. A visualization of a distribution of PA(y = y|x)
and the estimated noise is shown in Fig. 1.

4.3 Robust Optimization
After splitting up the dataset into potentially clean and cor-
rupted data, we use simple robust training techniques to
train the final classification model. Based on the idea of
label smoothing [Szegedy et al., 2016], we extend the CE
loss (Eq. (2)) and combine the ground truth label with the stu-
dent’s prediction and a sample dependent αx:

LRobust = − 1

|X|
∑

(x,y)∈X

∑
c∈C
S(βcx) log

(
PT (y = c|x)

)
with βcx = (1− αx)1[c = y] + αxPS(y = c|x) (7)

Acc [%] Aggre Rand1 Rand2 Rand3 Worst

SOP 95.61 95.28 95.31 95.39 93.24
CORES 95.25 94.45 94.88 94.47 91.66

DivideMix 95.01 95.16 95.23 95.21 92.56
ELR+ 94.83 94.43 94.20 94.34 91.09
PES 94.66 95.06 95.19 95.22 92.68
ELR 92.38 91.46 91.61 91.41 83.58
CAL 91.97 90.93 90.75 90.74 85.36
CE 87.77 85.02 86.14 85.16 77.69

Ours 93.68 92.50 92.63 92.54 86.64

Table 1: Classification accuracy of our method compared to standard
CE-loss framework and state-of-the-art methods SOP [Liu et al.,
2022a], CORES [Cheng et al., 2021], DivideMix [Li et al., 2020],
PES [Bai et al., 2021], ELR [Liu et al., 2020], and CAL [Zhu et al.,
2021].

and Sharpening S that is explained later.
While the teacher network is trained by LRobust, the student

network is still trained with the student loss LStud (Eq. (3)).
As larger as the instance dependent αx gets, the less the
ground truth of a sample x is trusted. We adapt αx for
every sample individually, depending on the cluster mem-
bership after Otsu. We define four fixed alpha values with
α1 < α2 < α3 < α4 where α1 gets assigned to samples
with PA(y = y|x) ≥ µ2, α2 to samples with µ2 > PA(y =
y|x) ≥ s, α3 to samples with s > PA(y = y|x) ≥ µ1, and
α4 otherwise.

Since a larger αx enlarges the entropy in the objective, we
use a modified Sharpening method

S(βcx) =
(βcx)1+αx∑
i∈C (βix)1+αx

(8)

as used by [Li et al., 2020] to minimize the entropy. The
Sharpening function is applied stronger for insecure samples
by reusing the above mentioned alpha.

5 Experiments
We perform several experiments to evaluate our proposed
method. The experimental setup and the used metrics are
explained first. Then we present evaluation metrics on the
recently released dataset CIFAR-10N [Wei et al., 2022] and
show details and observations of our core method Blind
Knowledge Distillation.

5.1 Experimental Setup
We evaluate our method on the noise levels provided in the
CIFAR-10N dataset. To be comparable to other methods, we
utilize the same model setup as used in [Li et al., 2020]. We
use a 18-layer PreAct ResNet [He et al., 2016b] and Stochas-
tic Gradient Descent with momentum of 0.9 and weight de-
cay of 0.0005 as optimizer. The networks are trained for 300
epochs beginning with a learning rate of 0.02 and reduce it to
0.002 after 150 epochs. We train the network with randomly
sampled batches of 128 image samples. In the first stage, the
teacher network optimizes the standard CE loss (Eq. (2)) until



[%]
Aggre Rand1 Rand2 Rand3 Worst

F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re
P
T

µ1 69.2 58.0 85.9 82.9 82.7 83.0 83.4 83.6 83.3 83.1 82.9 83.2 75.0 95.9 61.6
s 46.6 30.7 97.1 67.2 51.3 97.5 67.9 52.1 97.6 67.3 51.3 97.6 85.9 79.6 93.3
µ2 28.8 16.8 99.7 44.8 28.8 99.8 45.9 29.8 99.8 45.1 29.1 99.8 70.8 55.0 99.6

P
S

µ1 50.9 35.7 88.4 74.5 65.7 86.0 75.8 67.9 85.9 74.8 66.1 86.0 75.8 92.3 64.4
s 31.9 19.0 98.3 55.0 38.2 98.2 56.6 39.7 98.1 55.4 38.6 98.5 81.9 72.2 94.4
µ2 22.3 12.5 99.8 39.8 24.8 99.9 41.3 26.0 99.9 40.4 25.3 99.9 68.9 52.6 99.7

P
A

µ1 71.2 63.7 80.5 82.5 84.1 81.0 83.1 85.4 80.9 82.7 84.9 80.7 77.8 95.8 65.5
s 55.7 39.6 94.1 73.7 60.1 95.2 75.2 62.1 95.3 74.6 61.3 95.1 87.3 83.4 91.5
µ2 37.0 22.8 98.9 54.2 37.3 99.4 55.4 38.4 99.2 54.9 37.9 99.4 75.7 61.3 99.0

Table 2: F1-Score, Precision, and Recall on the label noise detection task with different probability sets (PT , PS , PA) and different thresholds
provided by Otsu’s method (s, µ1, µ2) to split the dataset into clean and corrupted subsets. Best metrics are presented in bold.

the detection of the tipping point induces the start of the sec-
ond stage, in which the teacher network optimizes the mod-
ified loss (Eq. (7)). The hyperparameters introduced by our
method are set to α1 = 0.3, α2 = 0.45, α3 = 0.55, α4 = 0.7.
For the noisy detection task, we use the probabilities PA and
the threshold µ1 after Otsu. We repeated the experiments at
least five times with random seeds and report the averaged
metrics.

The method proposed in this paper is evaluated on CIFAR-
10N [Wei et al., 2022]. CIFAR-10N manually re-labelled the
CIFAR-10 [Krizhevsky and Hinton, 2009] by multiple hu-
mans to investigate the impact of realistic label noise com-
pared to synthetically induced ones. The dataset contains 50K
training images and 10K test images with a size of 32 × 32.
For the training set, there are five label sets with realistic hu-
man label noise with a ratio of approx. 9%, 17%, 18%, 18%,
and 40% label noise. In the same order of the noise ratios,
we denote them as Aggre, Rand1, Rand2, Rand3, and Worst
in our experiments.

The tasks for the dataset are twofold: First, the classifier
should be trained robust to achieve a high test accuracy even
with high noisy rates and second, noisy labels in the training
data should be detected and marked as noisy. The metrics to
evaluate the tasks are given in the next section.

5.2 Metrics

We evaluate the performance of image classification with the
commonly used Accuracy (Acc) metric. It measures the clas-
sification accuracy on the test dataset XTest using the ratio of
correct classified test samples compared to the dataset size:

Acc =

∑
(x,y)∈XTest

1
[

arg maxc∈C
(
P (y = c|x)

)
= y
]

|XTest|
(9)

The task of noisy label detection is evaluated with the well-
known F1-score, Precision (Pr), and Recall (Re) metrics, in
which Precision decreases if clean labels are classified as
noisy and Recall decreases if noisy labels are classified as
clean. The F1-score harmonizes both aspects. With the sub-
sets of true (XNoise ⊂ X) and predicted (X ′Noise ⊂ X) noisy

labels from the training set X , the metrics are defined as:

Pr =

∑
x∈X′

Noise
1
[
x ∈ XNoise]

|X ′Noise|
, (10)

Re =

∑
x∈XNoise

1
[
x ∈ X ′Noise]

|XNoise|
, (11)

and F1 =
2

Pr−1 + Re−1
. (12)

5.3 CIFAR-10N
This section elaborates the results for the tasks of robust train-
ing and noise detection.

Robust Training We compare our results to the latest six
state-of-the-art methods and the standard CE baseline on the
CIFAR-10N Leaderboard in Tab. 1. Our method achieves
the performance to be listed on the new sixth position of the
leaderboard outperforming CAL and standard ELR. We want
to mention that ELR+ and DivideMix apply multiple mod-
els and high performance semi-supervised strategies such as
MixMatch [Berthelot et al., 2019].

Noise Detection The detection performance is shown in
Tab. 2. We present F1, precision, and recall for all five noise
levels in CIFAR-10N (10 classes). The split to classify clean
and corrupted labels is performed based on one of the prob-
ability sets PT , PS , and PA and the three threshold s, µ1,
µ2 provided by Otsu’s method. Intuitively, the precision is
higher for the lower threshold µ1 and recall for the higher
threshold µ2, respectively. The experiments show that the
harmonized metric F1 performs best for µ1. Thus, µ1 is used
to solve the task of Noise detection. The combined probabil-
ity PA performs better or on par w.r.t. the F1-score, confirm-
ing the improved classification accuracy that is also visible in
Fig. 3. An exemplary distribution of ground truth label prob-
abilities for clean and noisy labels with the subsequent split
based on Otsu is shown for the Worst dataset in Fig. 1.

5.4 Blind Knowledge Distillation
The core contribution of our method is Blind Knowledge
Distillation. This section analyzes its ability to detect
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Figure 3: Relation between the student’s prediction behavior and the classification and noise detection performance. The maximum of the
student network’s average maximum probability indicates the start of fitting to sample details and thus can be used for early stopping to avoid
overfitting. The models for this figure are trained without robust training for 75 epochs to show the standard training behavior.
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Figure 4: Test accuracy w.r.t. training epoch based on the pre-
dicted probabilities of the teacher, student, and the proposed com-
bined agreement. The agreement probability combines the strengths
and outperforms the teacher and student probability. Note that we
train the framework for 75 epochs and without robust optimization
(Sec. 4.3).

(over)fitting on sample details and how it can be used to
improve the classification accuracy. For the experiments in
this section, we trained our student-teacher framework with-
out detection of the tipping point and robust optimization
(Sec. 4.3) after generalization for 75 epochs to show the
teacher’s and student’s learning behavior.

Fig. 3a shows the average maximal probability prediction
of the student network over training time. The probability
strongly increases in the first training epochs and degrades
after a tipping point. It is notable that high noise rates de-
crease the absolute mean probability in general (see Worst).
Our explanation of this behavior is that classifiers are not able

to clearly predict a class based on simple and generalized
but ambiguous image patterns. Thus, the classifier produces
multiple predictions P (y = c|x) � 0 during the first gen-
eralization stage. An example pattern could be the coarse
shape which is often ambiguous, e.g. for classes dog and
cat. In the second training stage after the tipping point, the
teacher network adapts detailed sample patterns to maximize
P (y = y|x) which also minimizes P (y 6= y|x)

The test classification accuracy of the teacher network is
shown in Fig. 3b. While early stopping of standard optimiza-
tion is not important for clean datasets or low noise levels
(Aggre), fitting on sample details leads to overfitting and de-
creases the classification accuracy on high noise rates (Worst).
Therefore, the choice of an early stopping epoch is highly im-
portant. It shows that the tipping point from Fig. 4 is a good
indicator to detect overfitting. It proposes an accurate estima-
tion to stop optimizing on high noise levels without stopping
too early on low noise levels.

Using the tipping point in Fig. 3a to split the data into po-
tentially corrupted and clean subsets is intuitively, due to the
beginning overfitting and decreasing classification accuracy.
Fig. 3c shows the detection ability with the F1-score if split-
ting the dataset based on Otsu’s algorithm and PA at every
epoch. Similar to Fig. 3b, the tipping point gives a guess for
a suitable epoch to split the dataset. The estimation for high
noise rates is sufficient, especially due to the decreasing F1-
score after the tipping point. Since low noise rates does not
seem to affect the F1 negatively in latter training stages, the
tipping point estimate leads to a slightly too early splitting
epoch.

An interesting insight about the teacher and student clas-
sification accuracy PT and PS is shown in Fig. 4 on a high



noise level. While the teachers accuracy decreases during
overfitting, the students accuracy persists. We claim that us-
ing the complementary student loss from Eq. (3) prevents the
student from fitting to misleading image details by removing
the ground truth related logits lc=y . Also interesting is that
the combined probability PA suits as the overall best prob-
ability for classification. While the combined probability is
quite similar to the teachers probability PA ≈ PT during the
early stage, it converges to the students accuracy PA ≈ PS in
the latter ones. Near the tipping point, it outperforms both.

Overall, Blind Knowledge Distillation is a better choice to
automatically detect overfitting rather than to stop training
after predefined and fixed periods (e.g. in [Li et al., 2020]).
Combining PT and PS to PA can be used to improve the
overall classification accuracy.

6 Conclusion
This paper introduces Blind Knowledge Distillation that is
able to transfer simple and general image patterns that are not
based on individual image details. We show that our frame-
work is able to identify the tipping point from fitting to sim-
ple but general image patterns to fitting to image details and
use it for early stopping in standard classification frameworks
and furthermore to estimate the likelihood of samples in the
training data of being clean or corrupted.

Our method performs on par with state-of-the-art methods
that are not extended with high performance semi-supervised
training strategies. Compared to them, we do not rely on man-
ually predefined warm-up phases and adapt it online during
training. However, the intention of this paper is to provide
new insights about general learning behavior rather than to
tune our method with known strategies. We hope that Blind
Knowledge Distillation helps researchers to improve the han-
dling of under- and overfitting.
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