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Evolutionary Algorithm for Parameter Optimization
of Context Steering Agents

Alexander Dockhorn, Martin Kirst, Sanaz Mostaghim, Martin Wieczorek, and Heiner Zille

Abstract—Context Steering is a local approach to control an
agent’s movement in a dynamically changing scene. Recent works
have formalized the context steering approach by Fray and
presented a multi-objective view of the context steering problem.
Combining a variety of different behaviors, which can be used
multiple times in different configurations for different context
maps, introduces a large number of parameters that need to
be tuned to obtain well-performing agents. This work aims to
use evolutionary algorithms to optimize context steering agents
for various environments. A special focus lies on the evolution
of agents that perform robustly across multiple variations of
the same environment. To this end, we develop a real-valued
encoding for a context steering agent along with three different
fitness functions to represent different goals of the agent. Our
experimental evaluation shows that an evolutionary optimization
can produce agent configurations that perform well with respect
to different tasks and show a high intra-task robustness. The
proposed approach based on evolutionary optimization enables
the user to optimize context steering agents such that they can
explore environments while avoiding dynamic obstacles.

Index Terms—Context Steering, Autonomous Movement, Ro-
bustness, Multi-Criteria Optimization, Evolutionary Algorithms

I. INTRODUCTION

Various works in the research community have considered
steering to enable agents to move and react in dynamic
environments, e.g., computer games. In steering algorithms,
agents try to reach a goal by making one decision at a time
without storing any information on its environment. Each time-
step, the agent selects its next movement direction based on its
current surroundings. Steering approaches often make use of
multiple simple behaviors, such as following or avoiding close
objects. Complex behaviors can emerge from the aggregation
of multiple such movement behaviors. The steering approach
has become a useful tool for behavior designers, since each
strategy on its own is easy to implement and understand.

As a result, steering has become a popular approach in game
development [1]. Due to its simplicity, it is often recommended
in introductory books for game development [2] and shows a
widespread implementation in major game engines [3], [4].

With the rising complexity of game worlds, traditional steer-
ing approaches become hard to configure and cannot always
ensure the expected result. For this reason, context steering [5]–
[7] has been developed as an extension to steering to provide
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further information about the quality of different directions
of movement. While even context steering cannot guarantee
the expected result, it generally enhances the capabilities
of traditional steering at the cost of further increasing the
parameter space. Especially in dynamic worlds that confront
the agent with multiple goals to pursue or objects to avoid, it
can become a daunting task to balance out a large number of
underlying behaviors and parameters. From the perspective of
a game designer, it may further be of interest to provide agents
that can perform robustly over different variations of the same
game world. Failing to do so can result in inconsistent agent
behavior, which reduces the player’s immersion.

Since the agent’s behavior in steering algorithms is dependent
on the aggregation of multiple simple behaviors, which in turn
can consist of many parameters, the total number of parameters
to be tuned can be enormous. Moreover, the parameters will
not be independent of each other, which results in a complex
optimization task. Evolutionary algorithms have shown to be
efficient in solving various optimization problems such as
tuning the parameters of AI agents in games [8] or, for instance,
tuning the learning rates of a training algorithm for artificial
neural networks [9]. This raises the question whether they can
be efficiently applied to optimize steering agent behavior.

To answer this question, this work formalizes the search
for optimal parameters in a context steering agent as a multi-
criteria optimization problem. The goal of the optimization
process is to create agents that perform well with respect
to various objectives. Special attention will be given to the
robustness of the agent’s movement across multiple variants
of an environment. With our proposed optimization, we aim
to ensure that the agent is robust against small changes in its
environment, and therefore shows similar performance across
variants of the same environment.

The main contributions of this paper are:
• Formalizing the search for optimal parameters in context

steering as an optimization problem.
• Defining multiple fitness functions that are able to guide

an optimization algorithm with respect to different goals.
• Formalizing a measure for robustness over different

game-worlds and incorporate robust behavior into the
optimization process.

• Applying an evolutionary algorithm to optimize context
steering agents on predefined game worlds in different
variations. The results are analyzed for agents with up to
153 parameters.

In the following section, we are presenting background
on steering algorithms and review previous works on agent-
based movement and robustness. A detailed problem definition
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is presented in Section III as well as our specification of
fitness functions and robustness. In Section IV, we present
our solution for tuning an agent’s behavior according to the
presented problem using an evolutionary optimization process.
Its experimental evaluation and the respective results will be
presented in Section V. This paper ends with a short summary
of our work, its potential impact, and a brief discussion of
opportunities for future work (Section VI).

II. BACKGROUND AND RELATED WORK

In the following, we briefly summarize algorithms for
(context) steering (Section II-A) and methods for combining
context maps (Section II-B). Furthermore, we present related
work on agent-based movement (Section II-C) and robustness
(Section II-D).

A. Steering and Context Steering

In steering, agents combine multiple behaviors to determine
a movement direction, whereas each behavior returns a favored
direction based on the agent’s current surroundings [10].
Traditional steering works well for a flock of several agents
when the focus lies on the movement of the whole flock as
one entity. However, the individual agents may have flaws and
inconsistencies in their movement. The final movement direc-
tion results from the aggregation of each behavior’s preferred
direction. A resulting major issue is that this combination of
directions can lead to null vectors or oscillating behaviors [6].

Aware of these issues, Fray developed context steering [5].
In contrast to traditional steering, in context steering each
behavior returns the rating of each movement direction instead
of only the direction with the best rating, therefore returning
the context of its decision. Moreover, Fray extended this system
from a single goal to multiple different objectives that have
to be taken into account for the agent’s decision. The agents
used in this work apply context steering for their decision-
making, therefore the details of the context steering algorithm
are explained in the following.

Context steering is a steering system in which an agent can
perceive different types of objects that contribute to the different
goals of the agent, and each goal can be expressed analytically
as a so-called objective function. In terms of video games,
these objective functions could be something like gathering
objects to maximize your score or avoiding dangerous objects
to minimize damage. The context steering system tries to find
movement directions that maximize or minimize these objective
functions. To perceive its surroundings, an agent has a sensor
that consists of receptors. Each receptor has a direction vector
and is linked to an element of a scalar array (cf. Figure 1a).
This one-dimensional array of scalar values is called a context
map. The direction vector of each receptor represents an agent’s
possible movement direction. Initially, the context map is filled
with zero values. To get non-zero values that can be written
into the context map, the behavior needs to be sensitive to a
particular set of objects. If a receptor is pointing in the direction
of an object that the behavior is sensitive to, a scalar value z
is written into the corresponding element of the context map.
The final value depends on the type of mapping being used

for creating the context values and the distance of the object.
An example is shown in Figure 1a. Here, a seek behavior
is applied to the agent. The distance between the agent and
an object is described by the difference in positions. For all
receptors, it is checked if an object affects this receptor or not.
This is done by measuring the angle ω between the receptors
vector ~r and the vector from the agent to the object ~o.

ω = cos−1
〈~r,~o〉
‖~r‖‖~o‖

∈ [0, π] (1)

If the angle is smaller than a given threshold ξ ∈ [0, π], the
receptor is affected by the object, and a context value z > 0
is calculated as z = ψ(ω)g(‖~o‖) ∈ [0, 1].

The context value z depends on the exact location of the
detected object in relation to the agent. ψ(ω) maps the angle
ω ∈ [0, ξ] to a value in the range of [0, 1]. Similarly, the function
g(‖~o‖) maps the distance between the agent and the object to
a value in [0, 1], where only distance values ∈ [rmin, rmax] are
considered. The inner radius rmin is the distance, after which
the detection of objects starts, while the outer radius rmax is the
maximal distance to which objects are detected. The mapping
type used for ψ(ω) and g(‖~o‖) depends on the behavior an
agent shall have. For a seek behavior that shall find close
objects, an inverse linear mapping can be used for ψ(ω) and
g(‖~o‖). Other possible mapping options are squared mapping,
square-root mapping, or their inverse versions.

Figure 1a and Figure 1b illustrate this process by showing
how different behaviors sense their environment and fill the
values of a context map respectively. The length of each arrow
indicates the behavior’s rating of the corresponding direction.
While the figure shows the use of different context maps,
indicating interest and danger, it is also possible that multiple
behaviors write into the same context map. In this case, we
will use the maximum context value returned by all behaviors
writing into the same map.

B. Combining Behaviors and Context Maps

While the previous subsection explains how single context
maps are written, there exist multiple ways in which context
maps can be combined to obtain a decision for the resulting
movement direction.

The context steering system Fray developed [5] is able to
handle multiple objective functions, which means that multiple
context maps can be combined to a final steering direction.
While the interest map highlights directions of objects the agent
wants to approach, the danger map shows directions of objects
to avoid. To combine both context maps to a single steering
direction, first the lowest value in the danger map has to be
found. All elements with a higher value are eliminated as they
are considered to be too dangerous. In the interest map, the
same elements are eliminated as they share the same directions.
Out of the remaining elements of the interest map, the one
with the largest value, is chosen as the steering direction.

Kirst et al. [6], [7] proposed an alternative approach in which
the search for the best direction is approached from a multi-
objective viewpoint. For a context steering scenario with the
two context maps Interest and Danger, there are respectively
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Fig. 1. Example of the context steering aggregation process. (a) and (b) indicate the receptors for perceiving objects and the context maps of the respective
behavior. The length of an arrow of the context map indicates the strength of the response, i.e., its scalar value. (c) indicates how multiple context maps are
combined according to the multi-objective view by Kirst et al. [5].

the two conflicting context maps, i.e., Ci for the Interest map
values and Cd for the Danger map values. Each map is regarded
as one objective in the resulting multi-objective optimization
problem, whereas each direction is considered a solution.

In order to implement decision-making in this multi-objective
optimization task, Kirst et al. examined different decision-
making strategies. The best performing of those has been the
ε-constraint method, which is also used in the remainder of
this work. In the ε-constraint method, one objective is chosen
to be optimized, and all other objectives act as a constraint
for the optimization. The interest objective is the one that will
be optimized and the danger objective acts as a constraint.
The resulting steering direction is chosen as the direction with
the largest interest value among all directions whose danger
value is less than the constraint ε. If no solution satisfies the
constraint, the one with the smallest danger value is chosen
(cf. Figure 1c). Extending context steering by multi-criteria
optimization methods [7] has been shown to make it more
robust to noise but introduces additional parameters to be tuned.

C. Related Work on Agents-based Movement

The development of steering agents involves setting up a
set of rules and behaviors that will ultimately be combined to
result in an agent’s steering behavior. Hand-crafting complex
behaviors is a demanding and non-trivial task, due to the
interplay of defined subsystems. For this purpose, previous
work has focused on either tuning an agent’s steering behavior
or learning it from scratch.

Gerdelan and O’Sullivan proposed a system where an
evolutionary algorithm is used to tune the rules of a fuzzy
controller for steering [11]. In their work, they optimized
the set of rules for fast and reliable movement in given 3D
environments. Their evaluations show that this system is able
to produce a better controller configuration than the hand-
tuned reference set. Focusing on the efficient interplay of
multiple steering agents, Berseth et al. have developed an
optimization scheme for tuning the parameters of steering
agents to improve the efficiency and visual fidelity of a
simulated crowd [12]. Their method resulted in a parameter set
that minimized turbulence at bottlenecks, reduced building
evacuation times, produced emergent patterns, and overall

increased the computational efficiency. Nevertheless, while
performing well on a single environment, both of these works
do not consider performance on multiple environments. Next
to optimization algorithms, data-driven approaches to learn
steering behaviors are also being developed. The work by
Croitoru explored how trajectory data can be used to learn
steering behaviors for approximating group movements [13].
For this purpose, a particle swarm optimization-based method
has been proposed to derive agent steering behaviors based
on Reynolds’ boids model [14]. While the agents were able
to traverse simple environments, the steering approach by
Reynolds is known for resulting in deadlocks in more complex
scenarios [6].

Other than steering, the problem of agent-based movement
has been addressed in the field of heuristic search. In contrast
to the problem discussed in this work, heuristic search aims to
find an acceptable path within reasonable time, often achieved
by interweaving planning and execution. In heuristic search,
the map is usually represented in a graph data structure, and
methods like A∗ search or pruning techniques are applied to
re-plan the path dynamically with a limited budget (e.g., a time-
budget). Examples of such techniques can be found in works
by Koenig [15] and Korf [16]. More advanced techniques have
been explored, for instance in the works by Hernández et al.,
where an advanced pruning technique has been explored [17]
and modifications of a Time-Bounded A∗ were proposed [18].

In recent work, the efficiency of such algorithms has been
improved by integrating domain knowledge into the agent’s
planning process. In the work by Lawrence et al. [19] a database
of subgoals has been learned by preprocessing the map data.
This higher-level structure reduces the computation effort at the
cost of memory complexity. Munoz et al. [20] proposed to store
domain knowledge in the form of a neural network used for
choosing the agent’s actions based on its local neighborhood. A
more flexible approach has been proposed by Bulitko [21], who
uses evolved heuristic functions to guide the agent-centered
heuristic search in a class of similar path-finding problems.
These methods considerably speed up the planning process and
allow planning longer paths with the same budget restrictions.

The related works on real-time agent-based planning and
movement relate to the proposed approach and the problem
solved in this work in some aspects. Most importantly, path-
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planning is an essential part of the solutions proposed in
the mentioned works and is usually done via a graph data
structure. In our work, we assume a static path has already
been planned from start to destination, and the steering agent is
only concerned with the execution of this plan under dynamic
environments. Similarly to real-time heuristic search, a central
aspect of the current work is the question of how we can create
agents that execute such paths in a robust way, where the same
agent can perform well in multiple different environments. This
notion of robustness is introduced in the following.

D. Robustness

In our work, we focus on the robustness of steering behavior
and the associated optimization processes. The robustness of
a solution generally refers to a solution that is insensitive
to variations or uncertainties that arise in different parts
of the optimization problem. Different ways of measuring
and optimizing robustness have been used in the literature,
depending on the underlying application [22]. In the following,
we give a brief overview of existing approaches to optimize
robust solutions. The definition of robustness for the specific
problem in the current article is given below in Section III-C.

Branke studied the robustness of single individuals and how
to estimate their robustness in complex scenarios where the
exact calculation is not possible [23]. For such cases, it has
been proposed to estimate the individual’s effective fitness by
strategies such as re-evaluating one or multiple individuals,
using perturbations of the decision variables for estimating the
variation of fitness around a solution. Several ways of creating
robust solutions are compared in regard to their efficiency in a
work by Branke [24]. K. Deb and H. Gupta defined robustness
for a multi-objective optimization to find not only one robust
solution but a whole Pareto-optimal front [25].

In the context of steering, van Hoorn et al. have focused on
the agent’s performance in the same task but under varying
dynamics of the environment. This is important for steering
agents that need to frequently adjust their path according to
other moving objects in their environment. For this purpose, a
recurrent neural network-based controller for imitating human
players in a racing scenario was developed [26]. Three fitness
measures were defined, of which two evaluate the imitation of
the player’s commands, and the third measured how well the
car performed on a particular track. While the robustness in
the work above is mostly concerned about the uncertainty of
the evaluation, cross-task robustness describes another type of
challenge in which different environments need to be solved by
the same individual. This problem has been studied by Pérez et
al. who investigated the robustness of search-based controllers
in a general video game playing task [27]. Therefore, they
compared the agents’ performance across multiple games of
the general video game artificial intelligence framework [28].
Their goal was to evaluate how the different controllers react to
the different reward systems and types of noise to test if there
is a controller that is relatively robust towards these changes.

Similar to the works of van Hoorn et al., the present article
focuses on the robust performance on variations of the same
environment. To our knowledge, no work has yet combined

context steering of agents in dynamic environments with
robustness across different variations. In the next sections, we
outline the design of our agent and the optimization process
to achieve such robust solutions in the steering context.

III. PROBLEM DEFINITION

A. Problem Overview

The problem we address in this work is how we can build
agents that behave well / optimally in a given environment
according to multiple, conflicting goals. As introduced above,
we aim to create agents that, in each time step, make a decision
in which direction to move. Their goals include the collection
of interest objects, the avoidance of dangerous objects, and
staying close to a predefined path. Planning the path itself is
not done by the agent. Instead, the focus lies on the execution
of a path that has already been obtained by other means such
as path-planning algorithms [29]. Therefore, the agent should
react to dynamic changes in the environment which have not
been known at planning time.

Let an environment E be described by a 2D space to be
traversed. In each time-step, the agent can decide about its
next movement direction. An agent A is defined by the settings
of its parameters ~x and the corresponding decision-making
algorithm (in this work represented by context steering). In
addition, an agent contains a set of sensors R = {r1, .., rn}
to obtain information about its local environment. In context
steering, sensors are used to detect different types of objects
and their distance in a set of directions around the agent. As a
result, an agent can be seen as a function that maps the current
sensor input and its parameters ~x (here, consisting of steering
behaviors and their parameters) to a movement direction.

The goal of our optimization problem is to find the agent’s
parameters so that the series of decisions made by the agent
throughout the course of the simulation fulfills certain goals.
Research in this area has commonly used two conflicting goals
for context steering agents: collection of interest objects and
avoidance of dangerous objects [5]. To this end, certain objects
exist in the environment that are associated with either interest
or danger (throughout this paper visualized as green diamonds
and red circles respectively). An agent is typically expected
to collect all the objects of interest while at the same time
not colliding with any dangerous object. This process becomes
even more challenging in case those objects move around,
which would require frequent re-planning for path-planning
agents and makes steering the preferable solution in case
of short decision intervals. In addition, scenarios like racing
games may require the agent to follow a certain recommended
path. This path may be obtained by a user or planned by a
path-planning algorithm. Deviating from this path is possible,
but undesirable. These objectives (cf. specification of fitness
functions in Section III-B) may be in conflict with each other. If
dangerous objects are located on the defined path, the avoiding-
danger objective can only be satisfied by sacrificing on the path-
following objective. Similar trade-offs can be constructed for
the relationships between the other objectives. An example of
such an environment with a path and different objects is shown
in Fig. 2. Another layer of complexity is introduced when
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TABLE I
PARAMETERS OF CONTEXT STEERING BEHAVIORS AND THEIR BOUNDARIES

Parameter Boundaries Description

Magnitude Multiplier [0, 10] Impact of the behavior
Sensitivity Offset [-90, 90] Modifier of threshold. Affects the threshold ξ in the range [0, π]
Inner Radius [0, 5] The agent’s minimum perception distance.
Outer Radius [5, 50] The agent’s maximum perception distance.
Prediction Magnitude [0, 10] The agent’s point of perception is projected along its current movement direction by a fixed offset.
Value Mapping ψ(ω) [0.33, 3] Maps the angle ω to the range [0, 1], uses an inverse URQ mapping.
Radius Mapping g(‖~o‖) [0.33, 3] Maps the distance ‖~o‖ to the range [0, 1], uses an inverse URQ mapping.
Plane Bend [0, 90] The parameter rotates the plane towards the detected object. (Only used in Avoid)
Max Prediction Time [0, 5] Together with its current position and velocity, the maximal prediction time is used to determine the

position of the target object. (Only used in Pursue and Evade)
Objective Constraint [0, 1] The ε-constraint threshold of the Danger objective.

the robustness of the agent’s behavior is considered. Different
definitions of robustness exist in the literature (cf. Section II-D),
which concern how well the agents can perform in a dynamic
environment with external influences (e.g. wind or moving
objects), or in environments that have similar characteristics
(e.g., a set of labyrinths). Examples for such variations of
environments can be seen in Fig. 6 in the appendix. Our
specification of robustness will be highlighted in Section III-C.
As a result, the problem solved in this work is the following:
Find a set of parameters for an agent that enables it to satisfy
all three objectives as best as possible while at the same time
showing a robust behavior on different variations of the same
environment. In this multi-objective optimization we aim to
minimize each objective. The final outcome will be a Pareto-
optimal set of solution candidates, of which the user can select
a preferred individual.

In contrast to existing works on agent-centered movement
(e.g., [15], [16]), the optimization’s goal is not to find an optimal
path to reach a specified goal. Our environment does not allow
simulating future time steps and is by itself unknown to the
agent. Under these conditions, planning-based approaches are
not applicable without building a model of our environment,
that would enable the agent to predict the outcome of its actions.
Nevertheless, reinforcement learning would allow learning to
iteratively navigate in such an environment. Similarly, our
agent is meant to provide local decisions on its next movement
direction based on its current sensor input, with the aim of
achieving an optimal performance over the course of the
simulation. In addition, we aim for a solution that does not store
information in between time steps, thus keeping the memory
and computation profiles as low as possible. Such a memory-
free approach constrains the agent’s capabilities in cases where
the time to act is limited. Therefore, such steering methods may
fail to recognize and escape deadlock situations. On the other
hand, memory-free approaches may be applied in scenarios in
which the environment is unknown. Although a predefined path
is used for training, our agent does not need such information
during runtime, and the path can be obtained from a different
source and be unknown to the agent itself.

B. Specification of Fitness Functions

In this work, the task is to find a parameter set that enables
a context steering agent to navigate through a game scene

while collecting objects of interest, avoiding danger objects,
and sticking as close as possible to a user-defined path that the
agent cannot perceive. The fitness function uses a simulation of
the scene in which different measurements are made to evaluate
how well the agent solved these three requirements. The fitness
functions are designed in a way that they provide continuous
fitness landscapes, which is essential for a successful search
with an EA [30]. The details of the measurements and resulting
fitness functions are covered in the following.

Fitness by Target: The goal of this fitness function is to tell
the agent that it has to collect as many targets as possible. T
specifies the set of all targets objects, and U is a subset of T ,
namely all uncollected targets. When all targets are collected
(U = ∅), the agent obtains a perfect fitness score of zero for
this part. For each target that is not collected by the end of the
simulation, there is a distance-based penalty. How large the
penalty is depends on the starting distance towards that target
and how close the agents got towards the target while moving
during the simulation. Formally, this is defined as:

fT (~x) =
1

2

∑
u∈U

(1 + pT (A(~x), u)) (2)

with a distance based penalty pT

pT (A(~x), u) =
mint{dt(A(~x), u)}
dtstart(A(~x), u)

(3)

where tstart is the starting time step of the simulation and
dt(A(~x), u) is the distance between agent A (whose behavior
is defined by the vector ~x) and an uncollected target u at
timestep t of the simulation. The distance-based penalty can
reach a maximum value of 1.0, since the agent achieved at
least the starting distance. In addition, we add a fixed penalty
in Eq. (2) for not reaching a target, since there should be a
difference between getting close to a target or reaching it.

Fitness by Danger: The danger fitness function is designed
so that the agent avoids dangerous objects. To this end, we
define a set of danger-events ED, which indicate how often an
agent A moves within a certain radius Θ of a danger object
d(e). The set of all danger objects is called D. When an agents
enters a danger object’s vicinity, an event e starts at timestep
t
(e)
start, when the agents leaves the vicinity, the event ends at
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Algorithm 1 Pseudo-code of the Fitness Evaluation
Input: Scene variations V , Solutions to evaluate S, Set of Behaviors B
Output: Set of evaluated solutions S
1: for i = 1 to |S| do
2: for j = 1 to |V | do
3: Run three independent simulations of solution S[i] on scene variation

V [j] using the set of behaviors B
4: f (1), f (2), f (3) ← Calculate the fitness according to Eq. (6) for

each of the three simulations
5: fj ← median(f (1), f (2), f (3))
6: end for
7: S[i].F ← set the fitness value from {fj}j∈{1,...,|V |} according to

the used robustness function h (see Eq. (7))
8: end for
9: return S

timestep t(e)end. We define danger-related fitness as:

fD(~x) =
1

|D|Θ
∑
e∈ED

(
Θ− min

t∈[t(e)start,t
(e)
end ]

{dt(A(~x), d(e))}

)
(4)

The penalty for one event is normalized by the threshold
value so it can be at maximum 1.0. Additionally, all events are
normalized by the number of danger objects so that a penalty
of 1.0 is achieved if the agent crashes into each danger object
with the maximum penalty. Theoretically, a value greater than
one could occur since another event is created if the agent
re-enters a threshold radius of a danger object it entered before.
However, penalizing an agent even more when it relentlessly
crashes into the same danger object multiple times benefits the
goal of teaching the agent to avoid danger objects.

Fitness by Path: The last fitness function influences the
agent to follow a certain predefined path. By placing a path
close to danger objects, the agent acts ”braver” if it finds a way
to follow the path and simultaneously avoid the danger objects.
A path far away from dangerous objects should result in a
more cowardly behavior under the assumption that the agent
sticks to the path, and the training is not dominated by one of
the other fitness parts. Formally, we define the path-following
fitness function fP as follows:

fP (~x) =

∑tend
t=tstart

dt(A(~x), P )

(tend − tstart) · dmax
(5)

where tstart is the starting time of the simulation, tend is the end
time of the simulation, dt(A(~x), P ) is the smallest distance
from the agent’s position at time t to the path P , and dmax the
maximum distance an agent shall have from the path.

The distance to the path is accumulated over the entire
evaluation and normalized by a distance value that is considered
bad behavior for a specific scene. However, the agent can
move further away, which increases the penalty even more.
The closer an agent sticks to the path, the better is the fitness
value. Ideally, the agent follows the path directly and obtains
a value of fP (~x) = 0. Nevertheless, this scenario is not very
likely since the paths used in this work are composed of linear
segments, and the movement of the agent has some limitations
that will not allow performing fast turning operations.

Relations between Fitness Functions: The described fit-
ness functions are all designed in a way that the evolutionary
algorithm tries to minimize each of them. For most environ-
ments, this will not be possible since the individual fitness

functions can work contrarily. For example, if an interest object
and a danger object share the same position, the agent can
either collect the interest object and also touch the danger
object or avoid the danger object and also not collect the target
object, but minimizing both objectives is not possible. Similarly,
if danger objects are placed on the path or target objects are
not on the path, the agent can either follow the path, while
touching danger objects and missing target objects, or leave
the path to avoid danger objects and collect target objects.

Aggregation into a Single-Objective Problem: To select
a final solution candidate from the Pareto-optimal front of
candidate solutions, we chose not to minimize all the fitness
parts individually, but to find a trade-off where the weighted
sum of all fitness functions is minimal. Therefore, the overall
fitness for a single run of a simulation is a weighted sum of
the described three tasks as follows:

f(~x) = wT · fT (~x) + wD · fD(~x) + wP · fP (~x) (6)

In which fT (~x), fD(~x), and fP (~x) follow the definitions
above. wT , wD, wP are the weights of each fitness part. Each
fitness part is designed in a way that the optimal value is zero,
so the EA has to solve a minimization problem.

C. Robustness of Context Steering
In order to produce agents that are robust in their behavior,

we need to define the robustness measurement used in the
optimization of the agents. Since the behavior of an agent is
precisely defined by the set of parameters, the robustness is not
measured in terms of perturbation of the steering parameters.
Instead, what we are interested in is a behavior that performs
well in different scene variations, i.e., the environment in which
the agent needs to fulfill its tasks is changed. Thus, robustness
for context steering is defined as follows.

The robustness of a solution ~x will be measured by a function
h over the fitness of all variations of an environment:

optimize h(fv1(~x), fv2(~x), . . . , fv|V |(~x))
subject to vj ∈ V, ~x ∈ Ω.

(7)

Here, V is a set of environment variations on which the
solution ~x is tested. fvi is the fitness function for context
steering as in Eq. (6), evaluated using the problem variation
vi ∈ V . To evolve robust agents in our experiments, the
employed evolutionary algorithm optimizes the problem shown
in Eq. (7). Since the simulations for each agent’s performance
are non-deterministic, every evaluation is done three times,
and the median of the three runs is used as the fitness of that
respective scene variation (see Line 5 of Algorithm 1).

The individual fitness values on the scene variations are
combined by a function h, which reflects the type of robustness
the user prefers. In our work, we employ two versions. First,
we use the median performance on all variations, which reflects
a robustness that is concerned with overall performance, even
if some variations perform worse or better. The second type of
robustness concerns the worst-case outcome. In this case, the
function h is the maximum of the fitness values. This type of
robustness is useful for applications with critical infrastructure,
e.g., self-driving cars. In both version, lower values of h indicate
a higher robustness. The pseudo-code of our fitness evaluation
is summarized in Algorithm 1.
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IV. ALGORITHM DESIGN

In this section, we describe the design of the evolutionary
algorithm that is used to solve the defined problem from the
previous section. Together with the algorithm design, we define
the design of our encoding for the evolutionary algorithm,
which stems from the selection and combination of multiple
context steering behaviors. The goal of our evolutionary
algorithm (EA) is to find a set of parameters for the steering
behaviors so that the resulting agent behaves optimally with
respect to different criteria (Section III-B) as well as robust in
terms of variations of the same environment (Section III-C).

To reach this goal, the EA uses a population of individuals ac-
cording to the specified encoding (see below). Given a random
initial population, the EA applies evolutionary operators and
selection mechanisms to this population to gradually improve
the quality of solutions. For the environmental selection, a
(µ+ λ)-selection scheme is used where the individuals are
selected randomly. Additionally, elitism is used to retain the
best found solutions. The elite individuals are stored in an
external set with a size of 10% of the population size and used
in the parental selection process of the following generation.
In addition to the individuals generated through crossover and
mutation, the current population undergoes a separate mutation
process to enable the algorithm to make small adjustments to
the agents. For further details, please refer to the appendix,
where the pseudo-code of the algorithm is presented.

The basis of our algorithm are the underlying steering
behaviors and their parameters, which together define the search
space of our optimization. In this article, two context maps
(interest and danger) are used, which are associated with two
types of objects in the agent’s environment. The five behaviors
Seek, Flee, Avoid, Pursue and Evade were chosen (see the
appendix for a detailed description and visual comparison),
which, depending on the configuration of the experiments below,
can be applied to interest or danger objects and map to one of
the two used context maps.

The encoding of an agent’s behavior is defined by the
collection of all its parameters. Table I shows a summary
of the parameters and their boundaries that are used in the
configuration of an agent’s behavior. The upper and lower
boundaries are chosen based on preliminary experiments and
the steering framework’s1 standard values. As a result, an
individual of the EA consists of a real-valued vector in
which each of the behaviors contains 7 (Seek, Flee) or 8
(Avoid, Pursue, Evade) parameters. In addition, the independent
objective constraint parameter for the ε-constraint decision
making is added to the encoding. In total, the length of the
encoding depends on the number of used behaviors and differs
between the experiments (see Section V).

Special attention was given to the parameter design of
the value and radius mapping. The used software provides
predefined settings for the different mapping types. These
are linear, squared, square root mappings as well as their
inverse forms. Those have two issues, i.e., (1) they need to be

1The simulations in this work are based on the Polarith AI framework for
Unity, available at https://assetstore.unity.com/packages/tools/ai/polarith-ai-
free-movement-with-2d-sensors-92029

encoded as categorical genes requiring separate evolutionary
operators, and (2) we expect that the change in behavior when
switching between different mapping types is too big to ensure
a continuous fitness landscape. The latter would lead to a sub-
optimal optimization behavior since the evolutionary algorithm
can no longer accumulate small changes to increase the fitness
of an individual [30]. For these reasons, the predefined mapping
types are replaced by a modified version of the Uniform
Rational Quantization (URQ) mapping [31], which is able
to produce different mapping types depending on a parameter
u. A mathematical description of the modified URQ mapping
and a comparison with the predefined mapping types is shown
in the appendix. In addition, as specified above, the encoding
consists only of real values, making standard genetic operators
applicable in our experiments.

V. EXPERIMENTAL EVALUATION

The experimental evaluation’s goal is to test whether the
proposed evolutionary algorithm can solve the configuration
task of creating a complex context steering agent. We design
three different experiments to examine several aspects of the
performance. The first experiment is designed to evaluate
the effect of different weightings of the fitness function (see
Section V-B). The second experiment evaluates how much
design effort has to be made to create successful context
steering agents (see Section V-C). The third experiment evalu-
ates the agent’s robustness in different training variations (see
Section V-D). The results of each experiment are consequently
used in the following experiments. In particular, the most
promising weightings from the first experiment are used in the
second and third experiment and the better agent configuration
from the second experiment is also used in the third experiment.

To obtain statistically meaningful results, for each experiment
we compute 31 independent runs and report the median
values of all performances in the following sections. The
corresponding IQR values can be found in the supplemental
material. For comparison of the results, a two-sided Mann-
Whitney U test is used to tell if the results are significantly
different from each other. A run ends when a fixed number of
update steps has been performed or the target is reached.

A. Scenes and Evaluation Settings

Our evaluation consists of three scenes. Each features an
agent, a target, one or more danger objects, and a set of paths
that serve as a user guideline for the agent’s movement. The
agent’s task is to collect the targets while avoiding all dangers
and sticking as close as possible to the provided path. For
Scenes 2 and 3, five different variations were created to test
the agent’s robustness in changing environments in experiment
three, while the first two experiments only use the first variation
of each scene.

The first scene consists of one target and one danger object.
The danger object is placed between the agent and the target
object so that the agent cannot just move forward. Two
symmetrical paths shall lead the agent around the danger object
at a defined distance (cf. Fig. 2 (a)). The second Scene has
the same setup regarding the agent’s position, target object,

https://assetstore.unity.com/packages/tools/ai/polarith-ai-free-movement-with-2d-sensors-92029
https://assetstore.unity.com/packages/tools/ai/polarith-ai-free-movement-with-2d-sensors-92029
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(a) Scene 1, single obstacle (b) Scene 2, multiple obstacles (c) Scene 3, moving obstacles

Fig. 2. Visual representations of the three used scenes. Danger objects are shown as red circles, interest objects as green diamonds. The blue arrow marks the
starting location of the agent and the lines show the desired paths. For Scenes 2 and 3, the respective variant 1 is shown.

TABLE II
COMPARISON OF AGENTS WITH HAND-SELECTED VS. ALL BEHAVIORS.

EACH CELL INDICATES THE FINAL MEDIAN FITNESS VALUE f(~x) AND ITS
THREE COMPONENTS (fT (~x), fP (~x), fD(~x)).

hand-selected all behaviors p-value

S1 92.62 (0, 92.62, 0) 65.00 (0, 65.00, 0) 4.0e-07
S2 98.25 (0, 98.25, 0) 191.58 (0, 191.58, 0) 0.0007
S3 412.64 (0, 412.64, 0) 236.18 (0, 236.18, 0) 0.0555

and user paths. This time, multiple danger objects are placed
randomly in the scene, except for variation 3, which contains
only one danger object. The first variation of Scene 2 is
shown in Fig. 2 (b) and the remaining variations are shown
in the appendix Fig. 6. The third Scene involves dynamically
moving dangers (cf. Fig. 2 (c)). The recommended path leads
straight to the target. Moving danger objects continuously
intersect with the user’s path. This forces the agent to leave
the path to avoid danger objects. The last danger object before
the target is stationary and blocks the predefined path. The
different variations affect the speed, moving distance, and
spacing between the danger objects. The different parameters
for each variation can be found in Fig. 7 in the appendix.

Since the scenes differ in appearance, they also have different
fitness settings. In all three scenes, the danger threshold Θ
from Eq. (4) is set to 2.0. For Scene 1 and 2, dmax from
Eq. (5) is set to 5.0. In Scene 3, dmax is set to 10.0 as the
scene is designed to force the agent to leave the path. The
following settings were used for the evolutionary algorithm.
The population size is 100, and the algorithm runs for 100
generations. A Gauss-mutation was chosen with a mutation rate
of 0.05 and a standard deviation of 0.2 of the gene boundaries.
For crossover the simulated binary crossover was used with a
crossover probability of 1.0, and an η value of 20. The selection
mechanism for reproduction is the tournament selection with
a tournament size of 2. A step-based and time-independent
controller was chosen for the agent’s movement to provide a
better and more reproducible evaluation. Between two frames,
the agent travels a fixed step-size of 0.1 Unity units. In addition,
the maximal turning rate has been set to a 5 degree angle to
mimic a physics-based controller to a certain degree.

B. Experiment 1: Finding Suitable Weights

The first experiment is designed to evaluate the effect
of different weightings of the fitness function parts. Due
to limited space, we show numerical results and detailed
discussion of this experiment in the supplementary material

(Section D). We evaluate four different configurations for the
three weights wT , wD and wP as seen in Eq. (6). The first
weighting ~wequal := (1.0, 1.0, 1.0) assigns equal values to all
three fitness parts, while the other three ~wtarget, ~wpath and
~wdanger emphasize one of the three compared to the other
two respectively. In the first two scenes, the results show that
there are no statistically significant differences between the
performances of the four configurations. All weightings achieve
perfect scores for collecting targets and avoiding dangers. In
contrast, the only configuration that can avoid danger objects
effectively in Scene 3 is ~wdanger = (1.0, 1.0, 3.0), most likely
due to the increased complexity of moving danger objects along
the agent’s path. Since Scene 3 contains moving danger objects,
an increased focus on avoiding these may be of importance
to evolve meaningful agents. Therefore, for the experiments
in the following we apply equal weights (~wequal) to all three
fitness parts for Scenes 1 and 2, while for Scene 3 the danger
weighting ~wdanger is used.

C. Experiment 2: Search Space Dimensionality

The second experiment evaluates how much design effort
has to be made to create successful context steering agents.
This is done by comparing the hand-selected agents from
Experiment 1 with agents that contain a combination of all
possible behaviors. Compared with the hand-selected agents,
there will be no difference between the agents with all behaviors
across the three scenes. They contain the five behaviors: seek,
flee, avoid, pursue, and evade. Of each behavior, four different
versions exist in which the two object types are mapped to the
two objectives so that all combinations are covered. In total,
the agent contains 20 behaviors.

In Table II the fitness value of the hand-selected agents and
the agents with all behaviors is shown. The table shows the
median fitness values of 31 independent evaluations, whereas
Fig. 3 shows the value distribution. The statistical analysis and
IQR values can be found in the supplements. The agent with
all behaviors is able to collect the target object while avoiding
all danger objects. Furthermore, the agent with all behaviors
performs better in Scenes 1 and 3, whereas the hand-selected
agent is better in Scene 2. It is quite surprising that the agent
with all behaviors performs better in Scene 1 and not in Scene
2, although both scenes have a similar structure and task. For
Scene 1 and 3, the agent with all behaviors has overall better
performance. Since both agents achieved to collect all targets
and avoid all dangers, the path fitness function is the only
one left to optimize. It is expected that the agent with all
behaviors performs better since, with more behaviors, a better
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hand-selectedall behaviors

Fig. 3. Fitness distributions of 31 independent runs.

approximation of the path can be achieved. For Scene 1, the
learning task is easy enough to quickly find better solutions for
the agent with all behaviors than for the hand-selected agent.
In Scene 3, the task is so difficult that the hand-selected agent
has not as many good adjustment options as the agent with all
behaviors to find a better solution in the given evaluation time.
Scene 2 seems to be in the middle of that. It is simple enough
that the hand-selected agent is able to find good solutions
quickly, but it is too complex for the agent with all behaviors
to find solutions of the same quality, as it has to tune far more
parameters. However, some solutions outperform the best-found
solutions of the hand-selected agent. Since the agents with all
behaviors show more promising results this agent configuration
is also used for the next experiment.

The results show that with more behaviors, a better configu-
ration can be found. In all scenes, the target and danger part of
the fitness is minimized to zero, and only the path part is left
for optimization. Because of the controller, an agent can only
make turns that result in a curve to follow the path, but the
user-defined path is linear with hard edges. So it is impossible
to follow the path perfectly. However, with more behaviors,
the agent is able to do it more precisely.

To better understand the performance level of the used EA,
we compare it with the well-known parameter optimization
framework Hyperopt [32]. Results can be found in the sup-
plementary material. Concerning the optimality of the EA
solutions, the EA performs worse than the TPE-based Hyperopt
in Scenes 1 and 2, while showing no significant difference
in the more complex Scene 3. This indicates that EAs may
unfold their potential for complex environments with moving
targets compared to simpler Scenes. More specialized EAs, for
instance, from the large-scale area [33], [34] may be used to
improve the performance on such instances in future research.

D. Experiment 3: Evolving Robust Agents

The third experiment evaluates how robust agents can be
created through a modified training process. Therefore, five
different variations of Scenes 2 and 3 are made (cf. Figs. 6 and 7
in the supplements). For each variation, we train one agent.
Additionally, two agents are trained on all variations of a scene

according to the robustness definitions in Eq. (7). Resulting in
seven differently trained agents per scene. Afterward, the agents
are evaluated and compared on each variation individually.

The results of the robustness analysis are shown in Table III.
The IQR values are shown in Table VII and the statistical
analysis can be found in Table VIII in the supplemental material.
For both scenes, the data shows the same results. The agents
that are trained on one scene variation (Agent 1 - Agent
5) also have the best performance that was achieved in this
variation (V 1− V 5), whereas the robust agents (Agentmedian
and Agentmax) have a mediocre performance in most of the
variations. According to Table VIII in the supplements, the
differences in performances can be regarded as significant
compared to the respective best performing agent in all
variations. Averaged over all scene variations, the robust agent
Agentmedian achieves the best performance.

This experiment shows that when agents are trained for a
scene, they can become quite good at solving this particular
task. However, when some changes were made in the scenes,
this performance can drop dramatically. In contrast, an agent
that is trained on several scene variations can robustly yield
better results in all of the environments that were used in the
training. This shows that with the presented type of robustness,
a generalization effect can be achieved, at the cost of a slight
performance decrease across all scenes. Note that further
research is needed to evaluate how well this generalization
transfers to additional, unknown variations, that were not
available during the training phase.

VI. CONCLUSION

In this work, we proposed an evolutionary algorithm to
optimize parameter configurations for context steering agents.
For this purpose, a real-valued vector-encoding that fits the
needs of context steering has been developed along with three
fitness functions that enable the agent to perform according
to different criteria. Our experiments have shown that (1) a
different weighting of the individual fitness parts can influence
the agent’s final behavior, (2) the optimization is able to
optimize parameter spaces with up to 153 variables resulting
from up to 20 behaviors, and (3) resulting agents show high
robustness across multiple variants of an environment. In
terms of the latter, using the median performance over all
scenes as the primary optimization goal has shown to result
in the best average performance. In the case of performance-
critical applications, the maximum performance of all scenes
can be used instead, which ensures that the agent performs
well across all scene variants but has shown to be slightly
worse than using the median. This work shows that the
proposed EA is able to optimize agents for static scenes
with a single target object and simple dynamic scenes with
fixed movement patterns. While this constrained experiment
setup allowed us to better understand the capabilities of the
optimization process, we would like to extend the approach
to more complex scenarios. The existence of multiple target
points and more complex movement dynamics would be of
interest to enable the application of context steering agents in
real-world environments. Furthermore, future work may involve
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TABLE III
MEDIAN FITNESS VALUES OF DIFFERENTLY TRAINED AGENTS TESTED ON ALL VARIATIONS OF SCENE 2 AND SCENE 3. AGENTmedian AND AGENTmax WERE

TRAINED ON ALL VARIATIONS WITH THE RESPECTIVE ROBUSTNESS MEASURE. BEST PERFORMANCE IS MARKED WITH A GRAY BACKGROUND.

Agent Scene 2 Scene 3
V1 V2 V3 V4 V5 average V1 V2 V3 V4 V5 average

Agentmedian 419.24 213.55 227.02 355.16 215.98 286.19 626.39 314.92 266.91 393.74 310.58 382.50
Agentmax 362.08 293.56 293.44 331.74 313.93 318.95 392.39 622.29 602.92 375.68 615.09 521.67
Agent 1 191.58 378.55 384.89 473.74 395.76 364.90 236.18 362.94 920.61 335.88 489.44 469.01
Agent 2 333.33 138.04 287.48 287.25 536.45 316.51 978.92 227.49 1359.89 890.53 1603.54 1012.07
Agent 3 546.03 698.79 117.19 1494.47 618.01 694.89 592.04 1015.18 74.11 715.71 598.50 599.10
Agent 4 343.66 238.16 1580.83 241.37 207.62 522.32 2540.85 1424.84 305.08 214.78 806.06 1058.32
Agent 5 337.02 333.73 617.22 269.01 154.93 382.50 1231.19 618.35 560.91 553.90 121.58 617.18

optimizing not just the performance of our agents, but also
their diversity and authenticity. The former might be achievable
by replacing the weighted sum in the fitness function with a
multi-criteria optimization in which elements of the resulting
Pareto-front would represent agents with differing personas.
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APPENDIX A
STEERING BEHAVIORS

The following behaviors are used in our experiments:
• Seek, Flee: Whereas seek generates context values to-

wards the detected object, flee generates these values in
the opposite direction.

• Avoid: A plane is created with its normal vector towards
the detected object. The better a receptor is aligned with
the plane, and thus being perpendicular to the detected
object, the greater the context value it generates.

• Pursue, Evade: Pursue and evade are similar to seek
and flee with the only difference being that not the actual
position of the target is used but a predicted future position.
Pursue creates objective values towards the target object
and evades away from it.
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Fig. 4. Comparison of steering behaviors used in our algorithm.

APPENDIX B
URQ MAPPING

To match the boundaries of our parameters, we adjusted the
original equation to be able to map values of x from arbitrary
ranges [xmin, xmax] to the interval [0, 1] as follows.

URQ(x, u) =
u · (x− xmin)

u · (x− xmin)− x+ xmax
(8)

In our work, we chose an inverse URQ-mapping since it is
more appropriate for our context steering tasks (i.e., objects
that are far away should have a lower impact on the context
map than close objects). In the following, we compare the
modified URQ mapping with predefined mappings that have
previously been used in context steering [7].

How the values are mapped is defined by the u value. The
case of u = 1.0 is equivalent to an inverse linear mapping.
Because the predefined mapping types serve as a baseline, the
URQ-mapping shall try to cover the same range of mapping
possibilities. By setting the range of the mapping parameters
between 0.33 and 3.0, we obtain an adequate replacement
for the predefined mapping types without causing big jumps
in fitness when changing this value slightly. Fig. 5 shows
the resulting inverse URQ-mappings for values of u = 1.0,
u = 0.33 and u = 3.0.
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Fig. 5. Comparison of mapping functions.

APPENDIX C
EVOLUTIONARY ALGORITHM

Algorithm 2 Pseudocode of the used Evolutionary Algorithm
Input: Set of Scene Variations V , Set of Behaviors B, maxEvaluations
Output: Set of Solutions S with behavior parameters
1: S ← Random initial population of Solutions, containing parameters for

every used behavior
2: S ← fitnessEvaluation(V, S,B) //see Algorithm 1
3: currentEvaluations← |S|
4: Q← ∅ //archive of elitist solutions
5: while currentEvaluations < maxEvaluations do
6: P ← Selection of solutions from S ∪Q for reproduction
7: O ← Apply crossover to P
8: C ← Apply mutation to S and O
9: C ← fitnessEvaluation(V,C,B) //see Algorithm 1

10: currentEvaluations← currentEvaluations + |C|
11: Q← b0.1 · |S|c best solutions from C ∪Q
12: S ← |S| random solutions from C
13: end while
14: return S
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TABLE IV
RESULTS FOR DIFFERENT WEIGHTINGS PER SCENE

Objectives Weightings Scene 1 Weightings Scene 2 Weightings Scene 3
~wequal ~wtarget ~wpath ~wdanger ~wequal ~wtarget ~wpath ~wdanger ~wequal ~wtarget ~wpath ~wdanger

fT (~x) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
fP (~x) 92.62 93.42 93.59 91.89 98.25 97.62 96.75 95.95 174.40 285.82 31.99 412.64
fD(~x) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 140.06 69.51 346.73 0.0

total 92.62 93.42 93.59 91.89 98.25 97.62 96.75 95.95 314.46 355.33 378.72 412.64

weighted 92.62 93.42 280.78 91.89 98.25 97.62 290.25 95.95 314.46 355.33 442.71 412.64

TABLE V
MANN-WHITNEY U TEST FOR DIFFERENT WEIGHTINGS PER SCENE

p-value Scene 1 Scene 2 Scene 3
~wtarget ~wpath ~wdanger ~wtarget ~wpath ~wdanger ~wtarget ~wpath ~wdanger

~wequal 0.42 0.55 0.72 0.93 0.70 0.33 0.22 0.02 0.005
~wtarget 0.89 0.75 0.86 0.48 0.48 0.07
~wpath 0.89 0.83 0.15

TABLE VI
EXPERIMENT1: IQR VALUES OF THE TOTAL FITNESS FOR DIFFERENT WEIGHTINGS PER SCENE

IQR-value ~wequal ~wtarget ~wpath ~wdanger all behaviors

S1 8.48 8.05 6.08 7.94 18.39
S2 6.79 8.23 12.04 9.58 166.41
S3 128.03 127.54 12.42 325.57 225.82

APPENDIX D
DETAILED RESULTS OF EXPERIMENT 1

The first experiment is designed to evaluate if an evolutionary
algorithm can find context steering solutions and which effect
the different weightings of the fitness function have. Therefore,
four different weightings were chosen. The first weighting is an
equally weighted fitness function with wT = wD = wP = 1.
The other three weighting configurations are obtained by
weighting one of the three objectives higher than the other
two respectively, i.e., the second setting uses wT = 3,
wD = wP = 1, and so forth. These weightings are applied
to hand-selected agents of which it is known that feasible
solutions exist. In the following, we list which behaviors are
used for the hand-selected agents in each of the scenes.

Scene1: Seek(I −→ I), Seek(D −→ D)

Scene2: Seek(I −→ I), Seek(D −→ D)

Scene3: Seek(I −→ I), Seek(D −→ D),

Avoid(D −→ I), Evade(D −→ I)

where Seek(I −→ I) indicates, that a seek behavior is used
that maps interest objects to the interest context map, with I
indicating interest and D indicating danger.

A. Results

The resulting fitness values for all three scenes can be found
in Table IV and an analysis of the different weightings is
shown in Table V. For Scene 1 and 2, the tested weightings
did not significantly impact the resulting agent’s behavior in
terms of their final fitness value. However, in Scene 3 different

results were achieved. While the equal weighting scored best
in terms of overall fitness, the danger-emphasizing weighting
is the sole solution that managed to avoid all danger objects.
The weighting that puts higher emphasis on the path has found
solutions that had minimal path fitness. The results of the
Mann-Whitney U test which compares the results of all 31
independent evaluations per weighting support the claim that
the resulting behaviors of tested weightings are statistically
different.

For the other two experiments, we decided that the equal
weighting will be used for Scenes 1 and 2, as we did not
observe significant differences between tested weightings. For
Scene 3, we chose the danger-focused weighting as this is
the only weighting that achieves to avoid all danger objects
completely.

B. Interpretation

In Scenes 1 and 2, the given task was not complex enough to
enforce different movement strategies for different weightings.
These scenes were designed in a way that by avoiding the
danger object, following the path, and collecting the target
object happened automatically. While in Scene 3, the task was
designed so that the individual fitness parts work contradictory
to each other. Here either the path could be followed, or danger
objects could be avoided, but both at the same time is not
possible. So if the scene is designed with contradictory fitness
parts in mind, the different weightings will have an effect on
the training and the found solutions.
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TABLE VII
IQR VALUES OF DIFFERENTLY TRAINED AGENTS TESTED ON ALL VARIATIONS OF SCENE 2 AND SCENE 3.

Agent Scene 2 Scene 3
V1 V2 V3 V4 V5 V1 V2 V3 V4 V5

Agentmedian 185.21 64.81 62.29 91.70 43.82 494.59 731.16 567.07 147.48 242.78
Agentmax 108.71 113.76 53.98 96.17 91.18 139.66 139.24 251.04 101.53 166.61
Agent 1 166.48 599.88 321.44 671.46 665.27 203.60 673.57 694.46 701.99 1021.12
Agent 2 137.41 41.44 112.10 166.23 236.25 533.76 169.30 798.22 613.49 538.23
Agent 3 1044.31 1256.00 78.76 1142.54 1079.35 438.39 612.11 27.79 610.73 1132.58
Agent 4 134.29 270.17 708.06 45.54 359.80 525.54 579.47 993.47 121.44 881.13
Agent 5 232.29 289.27 318.41 193.27 55.17 339.57 934.79 519.84 628.19 23.80

TABLE VIII
STATISTICAL COMPARISON (P-VALUE) OF THE BEST FOUND AGENT FOR A VARIATION WITH ALL OTHER AGENTS OF SCENE 2 AND SCENE 3.

Agent
Scene 2 Scene 3

V1 V2 V3 V4 V5 V1 V2 V3 V4 V5
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Agentmedian 1.65e-05 1.00e-08 8.57e-11 1.65e-08 1.47e-06 6.23e-07 1.19e-06 5.84e-10 2.12e-05 1.80e-10
Agentmax 3.46e-07 5.36e-11 1.40e-11 3.46e-07 3.67e-11 8.50e-09 1.11e-06 2.50e-11 9.12e-10 1.87e-11
Agent 1 1.40e-11 1.40e-11 4.43e-11 1.40e-11 3.36e-09 1.40e-11 1.24e-10 1.40e-11
Agent 2 1.80e-10 1.54e-11 1.84e-09 3.67e-11 5.89e-11 1.70e-11 1.80e-10 1.40e-11
Agent 3 1.87e-11 1.40e-11 1.40e-11 1.40e-11 4.03e-11 7.81e-11 1.97e-10 1.54e-11
Agent 4 3.98e-09 2.75e-11 1.70e-11 4.03e-11 3.33e-11 4.47e-10 4.03e-11 4.88e-11
Agent 5 2.37e-10 3.03e-11 1.40e-11 2.16e-10 3.03e-11 1.64e-10 2.50e-11 6.62e-09

TABLE IX
COMPARISON OF AGENTS TRAINED WITH HYPEROPT VS. EVOLUTIONARY ALGORITHM. EACH CELL INDICATES THE MEDIAN, IQR, BEST AND WORST

VALUES OF THE FINAL FITNESS f(~x).

Hyperopt Evolutionary Algorithm p-value
Median IQR Best Worst Median IQR Best Worst

S1 53.47 7.83 37.51 62.80 65.00 18.93 49.54 98.42 3.7e-05
S2 69.70 35.23 51.59 315.62 191.58 185.85 44.48 374.44 7.6e-06
S3 206.46 119.82 112.87 910.24 236.18 227.34 114.79 955.29 0.2206

APPENDIX E
DETAILED RESULTS OF EXPERIMENT 2

For comparison with other state-of-the-art parameter op-
timization methods, we repeat the optimization of an agent
with all behaviors (similar to Experiment 2) using Hyperopt.
Table IX shows the fitness values of the agents tuned by
Hyperopt with the agents tuned by our proposed EA. Similarly
to Table II, the table shows the median fitness values of 31
independent evaluations. In addition, we show the IQR, best
and worst obtained fitness values for each method. According
to the value distribution and a two-sided Mann-Whitney U test,
the agent optimized by Hyperopt performs significantly better
in Scenes 1 and 2, whereas there seems to be no significant
difference in agent performance in the more complex Scene 3
that contains moving danger objects. Comparing the best and
worst values of both algorithms reveals that both algorithms
yield similar best and worst results. However, the IQR of the
EA shows that the values around the mean show a wider spread.
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(a) Scene 2, Variant 1 (b) Scene 2, Variant 2 (c) Scene 2, Variant 3

(d) Scene 2, Variant 4 (e) Scene 2, Variant 5

Fig. 6. Variants of Scene 2.

(a) Scene 3, Variant 1: (0.1, 10.0, 5.0) (b) Scene 3, Variant 2: (0.15, 10.0, 5.0) (c) Scene 3, Variant 3: (0.15, 20.0, 5.0)

(d) Scene 3, Variant 4: (0.1, 10.0, 3.0) (e) Scene 3, Variant 5: (0.2, 20.0, 3.0)

Fig. 7. Variants of Scene 3 listing the parameters (speed, distance, spacing) of dynamic danger objects.
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