
DESIGN AND IMPLEMENTATION OF TAG:
A TABLETOP GAMES FRAMEWORK

Raluca D. Gaina*, Martin Balla*, Alexander Dockhorn*,
Raúl Montoliu†, Diego Perez-Liebana*

*School of Electronic Engineering and Computer Science, Queen Mary University of London, UK
†Insitute of New Imaging Technologies, Jaume I University, Castellon, Spain

Version 1.0 — December 28, 2020

ABSTRACT

This document describes the design and implementation of the Tabletop Games
framework (TAG), a Java-based benchmark for developing modern board games
for AI research. TAG provides a common skeleton for implementing tabletop
games based on a common API for AI agents, a set of components and classes
to easily add new games and an import module for defining data in JSON format.
At present, this platform includes the implementation of seven different tabletop
games that can also be used as an example for further developments. Additionally,
TAG also incorporates logging functionality that allows the user to perform a
detailed analysis of the game, in terms of action space, branching factor, hidden
information, and other measures of interest for Game AI research. The objective of
this document is to serve as a central point where the framework can be described
at length. TAG can be downloaded at:

https://github.com/GAIGResearch/TabletopGames

Keywords Tabletop Games · General Game AI · TAG · Statistical Forward Planning

https://github.com/GAIGResearch/TabletopGames

Contents
1 How to use this Document? 3

2 TAG and Tabletop Games 3

3 Implementing Games in TAG 4
3.1 Game State . 5
3.2 Forward Model . 5
3.3 Actions . 6
3.4 Other modules . 6

4 Games 7
4.1 Tic-Tac-Toe . 8
4.2 Love Letter [1] . 8
4.3 Colt Express [2] . 8
4.4 Uno [3] . 9
4.5 Virus! [4] . 10
4.6 Exploding Kittens [5] . 10
4.7 Pandemic [6] . 10

5 Game Analysis 11

6 Agents and Algorithms 12
6.1 Human Players . 13
6.2 Random . 13
6.3 One Step Look Ahead (OSLA) . 13
6.4 Rolling Horizon Evolutionary Algorithm (RHEA) 13
6.5 Monte Carlo Tree Search (MCTS) . 14

7 Running the framework 14
7.1 Running a game . 14
7.2 Running multiple games . 15
7.3 Running tournaments . 15

8 Future Directions 15

References 16

A A Game Example: Love Letter 18
A.1 Game State . 18
A.2 Forward Model . 20
A.3 Actions in Love Letter . 23

2

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

1 How to use this Document?

This paper serves the purpose of a living documentation for TAG - a Tabletop Games framework
for studying computational intelligence in this type of games. This document will be continuously
updated with the new developments of the framework. When citing this paper please make sure to
specify its version since the paper will be updated over time.

2 TAG and Tabletop Games

TAG was designed to capture most of the complexity that modern tabletop games provide, with a
few games implemented already and more in progress. Our framework includes handy definitions
for various concepts and components common across many tabletop games [7].
We define an action as an independent unit of game logic that modifies a given game state towards
a specific effect (e.g. player draws a card; player moves their pawn). These actions are executed
by the game players and are subject to certain rules: units of game logic, part of a hierarchical
structure (a game flow graph). Rules dictate how a given game state is modified and control the
flow through the game graph (for instance, checking the end of game conditions and the turn order).
This turn order defines which player is due to play at each time, possibly handling player reactions
forced by actions or rules. At a higher level, games can be structured in phases, which are time
frames where specific rules apply and/or different actions are available for the players.
All tabletop games use components (game objects sharing certain properties), whose state is
modified by actions and rules during the game. TAG includes several predefined components to
ease the development of new games, such as tokens (a game piece of a particular type), dice (with
N sides), cards (with text, images or numbers), counters (with a numerical value), grid and graph
boards. Components can also be grouped into collections: an area groups components in a map
structure in order to provide access to them using their unique IDs, while a deck is an ordered
collection (list) with specific interactions available (e.g. shuffle, draw, etc.). Both areas and decks
are considered components themselves. A summary of the components follows:

• Token: A game piece of a particular type, usually with a physical position associated with
it.

• Die: A die has a number of sides N associated with it and can be rolled to obtain a value
between 1 and N (inclusive).

• Card: A card usually has text, images or numbers associated with any of its 2 sides, and is
the most common type of component used in decks.

• Counter: An abstract concept used to keep track of a particular variable numerical value;
usually represented on a board with tokens used to mark the current value, but recognized
as a separate object in this framework. It has a minimum, maximum and current value
associated with it, where the current value can vary between the minimum (inclusive) and
maximum (inclusive).

• Graph board: A graph representation for a board, as a collection of several board nodes
connected between each other.

• Board node: A node in a graph board which keeps track of its neighbours (or connections)
in the board.

• Grid board: A 2D grid representation of a board, with a width and height associated with
it. It can hold elements of any type.

The structure of TAG consists of several packages:

• core: All core framework functionality, including all abstract classes to be extended by
game implementations.

• evaluation: Classes for running tournaments and evaluations of games or AI players.
• games: Specific implementations of abstract classes for each game, each grouped in its

own package.

3

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

• gui: Generic Graphical User Interface (GUI) helper classes, including the PrototypeGUI
class which can be used with any in-progress game. Each game can extend this to implement
customized functionality in their GUIs, for better player interaction and thus a better player
experience.

• players: All players (human and AI) available.
• utilities: Various utility classes and generic functionality shortcuts.

Additionally, the folder data (outside of the source files) stores assets for the games, each in their
own folders. Most of these refer only to images used in the interfaces, but may include JSON files
and other data as well (e.g. Pandemic stores board and card information here as well).
The TAG framework brings together all of the concepts and components described previously and
allows quick implementation and prototyping of new games. To this end, a flexible API is provided
for all functionality needed to define a game, with multiple abstract classes that can be extended for
specific implementations. The framework already provides some generic functionality: ready-made
components, rules, actions, turn orders and game phases. These are all represented through several
game objects found in the core package, which can be instantiated in game implementations for
immediate use. Additionally, TAG includes a fully functional game loop and a prototyping GUI.
The GUI allows users to start interacting with the games as soon as they have the two main classes
required set up: a Game State (GS) class and a Forward Model (FM) class.
GS is a container class, including all variables and game components which would allow one
to describe one specific moment in time. It defines access methods in the game state to retrieve
existing game components, make custom and partially observable copies of the state, and define
an evaluation function that can be used by the playing agents. We strongly recommend that game
components (i.e. extending the Component class) are used to describe a game state as much as
possible (e.g. using Counters instead of integer variables to keep track of numbers in the game), in
order for general AI players to have an easy common access to understand game states.
FM encompasses the logic of the game: performs the game setup (by setting the GS components
and variables to their initial state and/or reading from files and creating components); defines what
actions players can take in a particular game state; applies the effect of player actions (received one
at a time; if a simultaneous-action game is to be implemented, we recommend waiting to receive all
before modifying the game state) and any other game rules applicable; uses a turn order to decide
which player is due to play next, and checks for any end of game conditions (and setting the game
status and player results in the game state appropriately if the game is over). The FM is available to
AI players for game simulations.
For each game, users can further implement specific actions, rules, turn orders, game parameters (for
easy modification of game mechanics), a GUI and provision of game data. The last is useful when
the game requires large amounts of data such as tile patterns, cards and board node connections, and
it is provided via JSON files. A full guide on using the framework and implementing new games is
available in the wiki provided with the code1.
TAG’s game-loop is presented in Algorithm 1. Given a list of agents and parameters of the game to
be played, the framework performs an initial setup of the game state (s0) and the game’s forward
model (FM). While the game state is not terminal, the turn order selects the next player to act. To
ensure partial observability, we generate an observation object for the current agent which hides
the state of unobserved components. Hence, a list of available actions is generated and the agent
is queried to provide the next action to be executed (at). Finally, the forward model is used to
modify the game state given the action (producing st+1), and the graphical user interface is updated
accordingly.

3 Implementing Games in TAG

This section dives deeper into the structure of the framework. TAG can be used to implement
new games, for which it provides a set of abstract classes and interfaces to ease the development.
Although there is no hard requirement to implement games in a particular way, the recommended
set of classes to implement is described here.

1https://github.com/GAIGResearch/TabletopGames/wiki

4

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

Algorithm 1 Overview Game Loop
Input: list of agents, game parameters gp
Output: win rate statistics

s0, FM = SETUPGAME(gp)
while not ISTERMINAL(st) do
agent← GETCURRENTPLAYER(st)
observation← GETOBSERVATION(st, agent)
actions← FM.GETAVAILABLEACTIONS(st, agent)
at← agent.GETACTION(observation, actions)
st+1 ← FM.NEXT(st, at)
GUI.UPDATE()

end while

In order to implement a new game in TAG, the following core modules can be implemented:

3.1 Game State

This core class includes all the information about the components that form the state of the game.
New game states can extend the class core.AbstractGameState, implementing the following
methods:

• _getAllComponents(): returns a list of all the components of the game state. The method
is called after game setup, so you may assume all components have already been created.
Decks and Areas have all of their nested components automatically added.

• _copy(int playerId): defines a reduced, player-specific, copy of your game state. This
includes only those components (or parts of the components) which the player with the
given ID can currently see. For example, some decks may be face down and unobservable
to the player. All of the components in the observation should be copies of those in the
game state, as the player is not prohibited from modifying the state it receives (copies
ensures the real objects in the game are not affected in any way).

• _reset(): resets any variables of the game state to their state before FM initialisation.
• _getScore(int playerId): implements a heuristic function that returns a numerical value for

the current game state, given a specific player - the bigger this value, the better the state.

Additionally, game state classes can implement the core.interfaces.IFeatureRepresentation
interface, which provides an interface for methods that can be used to extract further generic
information about the game state, in terms of abstract features. Game state classes can also
implement the core.interfaces.IVectorObservation interface, which allows AI players to
receive a vector observation from the game state.
Appendix A.1 shows an example of a Game State implementation for the game Love Letter.

3.2 Forward Model

The forward model class is in charge of setting up the initial game state and advancing the game
state when provided with an action to be executed by one of the players. In order to implement
a forward model, extend the class core.AbstractForwardModel and implement the following
methods:

• _setup(AbstractGameState firstState): perform the initial game setup according to the game
rules, initialising all components and variables in the given game state (e.g. give each player
their starting hand, place tokens on the board etc.).

• _next(AbstractGameState currentState, AbstractAction action): apply the given action to
the given game state, execute any other non-action-dependent game rules (e.g. related to
game phase changes), check for game end conditions (setting the game status and player
results in the given state) and move to the next player if required.

5

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

• _computeAvailableActions(AbstractGameState gameState): return a list with all actions
available for the current player, in the context of the game state object.

• _copy(): return a new instance of the Forward Model object with any necessary variables
copied. Use a new random seed (e.g. System.currentTimeMillis() for initialisation of
the copy object).

• endGame(): override this function if the game requires any extra end of game computation
(e.g. to print end of game results).

Appendix A.2 shows an example of a Forward Model implementation for the game Love Letter.
Note: Forward model classes can instead extend from the abstract class
core.rules.AbstractRuleBasedForwardModel, if they wish to use the rule-based sys-
tem instead; this class provides basic functionality and documentation for using rules, and an
already implemented _next() function.

3.3 Actions

TAG provides a series of simple actions that are common for many games, such as shuffling decks
(or, more generally, shuffling groups of components), drawing components from one deck to another,
replacing components, re-arranging decks or placing tokens in grid boards. The games currently
included in the framework use these actions to manipulate game components such as decks and
counters in the game.
It is also possible to define game specific actions for new games. For this, a new action class
needs to be created that extends from core.actions.AbstractAction. Two main methods can
be overriden:

• execute(AbstractGameState gs): this method executes the action the class represents,
applying its effect to the given game state. Within this method, any component that has
been registered with a unique ID can be retrieved from the game state with the function
AbstractGameState.getComponentById(int id).

• copy(): this method returns an exact copy of this action.

Important: Actions should not hold any reference to other objects to avoid cross-referencing in
the game and prevent issues with deep copies. Unique component IDs should be passed instead into
action classes constructors.
Examples of game-related actions for Love Letter can be seen in Appendix A.3

3.4 Other modules

Additionally, some other classes should also be implemented or added to, following the framework’s
structure:

• Game Type: TAG allows to categorize its games into different internal collections of
games of the similar type. This allows the user, for instance, to retrieve games with
certain mechanics or number of players within the framework. The class games.GameType
includes several methods that can be added to so that a new game is known and search-able
within the framework. In order to incorporate a game to the framework in this way, you
should add the following:

– Add a new enum value for your game, defining the minimum and maximum number
of players, a list of categories the game belongs to, and a list of mechanics the game
uses (both categories and mechanics can be already existing ones or newly defined
options).

– In the method stringToGameType(String game), add a new case for your game so
that the string name can be converted to the correct game type.

– In the method createGameInstance(int nPlayers, long seed), add a new case
for your game, creating the appropriate instances of the game state and forward model
needed to run, given the number of players taking part in the game and the random
seed.

6

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

– In the method createGUI(AbstractGameState gameState, ActionController
ac), add a new case for your game (if GUI is implemented, the PrototypeGUI may be
used otherwise), creating the appropriate instance of GUI, given an initial game state
and the action controller managing user interactions within the GUI.

Important: doing this step is necessary for using the main methods of running games in
the framework in the core.Game class and game analysis.

• GUI: The abstract class core.AbstractGUI can be extended to indicate not only how the
game should be displayed in a graphical user interface, but also to specify what bits should
be occluded to respect partial observability of the game state for human players. The class
gui.PrototypeGUI and the other GUI helper classes in package gui can be used as a
simple template to be customized depending on necessary visualisations and interactions.

• Game Parameters: These allow tweaking the game behaviour and rules when these depend
on numerical or discrete values. For instance, the number of cards in a hand of Uno or the
number of outbreaks allowed before losing a game of Pandemic can be specified this way.
This provides a centralized point for the parameters of a game that define its behaviour and
allow play-testing different versions of the same game easily. In order to implement game
parameters, a parameters class for a specific game must extend core.GameParameters or
implement core.interfaces.ITunableParameters (which allows game parameters to
be randomized or tuned).

• Turn Order: The order in which players make moves in the game can be specified by
extending the abstract class core.turnorders.TurnOrder, which provides functionality
to establish the starting and current player and advance the turn to the next player to move.
Default turn orders such as alternate (one after another until all players have played) and
reactive (which adds the possibility of a player to act out of turn) are included in the
framework and can be reused for new games.

• Constants: For efficiency reasons, you may declare constants of a given game for quick
access through the framework. The class pandemic.PandemicConstants shows an exam-
ple of how to specify game-related constants for a game, and how to use the framework’s
Hash utility to provide direct access to certain game components.

The following classes can further be implemented, but they are not required for essential game
functionality, and may not be needed at all depending on the game implemented:

• Game (Optional): Extending core.Game, allows to specify the types of parameters, game
state, GUI and forward model for a specific game. This class can also be used to add the
entry point to run the game with some AI agents or humans.

• Game Data (Optional): Some tabletop games need extra data information, which may
come in the form of specific card sections (costs, effects, categories, etc.), tile patterns,
etc. This data can be specified in json format files for each component type and read with
the json parser incorporated in the framework. Alternatively, it is possible to add own
format and parser code. The abstract class core.AbstractGameData can be extended to
incorporate data reading for the particular game.

• Game Phase (Optional): Some games can be structured in phases, we different rules and
available actions apply. The core.AbstractGameState class includes a definition for
some basic default game phases (main, player reaction, end), which could be expanded in
order to provide specific phases for new games.

4 Games

There are currently 7 games implemented in the framework, varying from very simple test games
(Tic-Tac-Toe) to strategy games (Pandemic [6]), as well as diverse challenges for AI players. A few
games are currently in active development (Descent [8], Carcassonne [9] and Settlers of Catan [10]),
and many more are in the project’s backlog, including games from other frameworks to allow for
easy comparison. Further development plans also include adding easy to use functionality for
wrapping external games, so that a direct comparison can be carried out under the same conditions
without the need to re-implement games under our framework’s full restrictions.

7

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

All games implemented can be found in the games package, each registered in the games.GameType
class; this class allows specifying properties for each game, to allow for automatic listing for experi-
ments (e.g. a list of all games with the “cooperative” tag). We highlight next some particularities of
the games currently implemented in the framework.

4.1 Tic-Tac-Toe

2 players alternate placing their symbol in a N ×N grid until one player completes a line, column
or diagonal and wins the game; if all cells in the grid get filled up without a winner, the game is a
draw. This is the simplest game included in the framework, meant to be used as a quick reference
for the minimum requirements to get a game up and running. Its implementation makes use of
mostly default concepts and components, but it implements a scoring heuristic and a custom GUI
for an easier interaction given the specific game mechanics.

4.2 Love Letter [1]

2 to 4 players start the game with one card each, representing a character, a value and a unique
effect. A second card is drawn at the start of each turn, one of which must be played afterwards.
After the last card of the deck is drawn, the player with the highest valued card wins the current
round. A player wins the game after winning 5 rounds. Love Letter features partial observability,
asymmetric and changing player roles and a point system over several rounds. Figure 1 shows an
example game state.

Figure 1: Screenshot of Love Letter in TAG.

4.3 Colt Express [2]

2 to 6 players control a bandit each, with a unique special ability. Their goal is to collect the most
money while traversing the two-level compartments in a train and avoiding the sheriff (a non-player
character moved by players and round card events). The game consists of several rounds, each with
a planning (players play action cards) and an execution (cards are executed in the same order) phase.
During the former, players play action cards, which are executed in the same order in the latter
phase. This processing scheme forces players to adapt their strategy according to all the moves
already played, in an interesting case of partial observability and non-determinism: the opponents’
type of action may be known (sometimes completely hidden in a round), but not how it will be
executed. Additionally, the overall strategy should be adapted to a bandit’s unique abilities. Those
actions can move the player’s character along the compartments, interact with neighbouring players,

8

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

or collect money. The game ends after all rounds are played, the player with the most money being
the winner. Figure 2 shows an example game state.

Figure 2: Screenshot of Colt Express in TAG.

4.4 Uno [3]

The game consists of coloured cards with actions or numbers. Numbered cards can only be played
in case either the colour or the number matches the newest card on the discard pile. Action cards
let 2 to 10 players draw additional cards, choose the next colour to be played or reverse the turn
order. A player wins after gaining a number of points over several rounds (computed as the sum of
all other players’ card values). Uno features stochasticity, partial observability and a dynamically
changing turn order. This game has the potential of being the longest game in the framework since
players need to draw new cards in case they cannot play any. Figure 3 shows an example game
state.

Figure 3: Screenshot of Uno in TAG.

9

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

4.5 Virus! [4]

2 to 6 players have a body each that consists of four organs, which can be: infected (by an opponent
playing a virus card), vaccinated (by a medicine card), immunised (by 2 medicine cards) or destroyed
(by opponents playing 2 consecutive virus cards). The winner is the first player who forms a healthy
and complete body. Virus! features stochasticity and partial observability, with the draw pile and
opponents’ cards being hidden.

4.6 Exploding Kittens [5]

2 to 5 players try to avoid drawing an exploding kitten card while collecting other useful cards.
Each card gives a player access to unique actions to modify the game-state, e.g. selecting the player
taking a turn next and shuffling the deck. This game features stochasticity, partial observability and
a dynamic turn order with out-of-turn actions: in contrast to previous games, Exploding Kittens
keeps an action stack so that players have the chance to react to cards played by others using a Nope
card. A Nope card cancels the most recent effect, but can itself be cancelled by another Nope card.
The turn order and action stack are implemented by extending the base-classes of the framework.
Figure 4 shows an example game state.

Figure 4: Screenshot of Exploding Kittens in TAG.

4.7 Pandemic [6]

Pandemic is a cooperative board game for 2 to 4 players. The board represents a world map, with
major cities connected by a graph. Four diseases break out and the objective of the players is to
cure them all. Diseases keep spreading after each player’s turn, sometimes leading to outbreaks.
Each player is assigned a unique role with special abilities and is given cards that can be used for
travelling between cities, building research stations or curing diseases. Additionally, they have
access to special event cards, which can be played anytime (also out-of-turn). All players lose
if they run out of cards in the draw deck, if too many outbreaks occur or if the diseases spread
too much. Pandemic features partial observability with face-down decks of cards and asymmetric
player roles. It employs a reaction system to handle event cards and is the only game currently
using the graph-based rule system.
In each turn, the player can play up to 4 consecutive actions, with a changing action space (e.g.
moving to a new city may result in new actions). To handle event cards and actions that require
consent or reactions from other players, a reaction system is used, so that a player can be asked to
return an action whenever needed. Pandemic also features partial observability, as the draw deck
and the infection deck are not visible. Figure 5 shows an example game state.

10

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

Figure 5: Screenshot of Pandemic in TAG.

5 Game Analysis

All games in the framework can be analysed to illustrate the challenge they provide for AI players.
Here, we present measurements currently implemented and taken from the existing games described
in Section 4. We measure the following averages, observed in our experiments:

µ1 Action space size: the number of actions available for a player on their turn.
µ2 Branching factor: the number of distinct game states reached through player actions
from a given state.
µ3 State size: the number of components in a state.
µ4 Amount of hidden information: the percentage of components hidden from players
on their turn.
µ5 Game speed: the execution speed of 4 key functions (in number of calls per second):
setup, next, available action computation and state copy.
µ6 Game length: measured as the number of decisions taken by AI players, the total
number of game loop iterations (or ticks), the number of rounds in the game and the number
of actions per turn (APT) for a player.
µ7 Reward sparsity: granularity of the heuristic functions provided by the game, measured
by minimum, maximum and standard deviation of rewards observed by the players.

Table 1: Analysis of games, played 1000 times for each possible number of players on each game,
using random agents: action space size, branching factor, state size, hidden information and game
speed.

µ1 µ2 µ3 µ4
µ5

Setup Next Actions Copy
Tic-Tac-Toe 5.69 6.79 1 0% 105 106 105 106

Love Letter 4.74 10.78 24.00 62.96% 105 106 105 106

Uno 1.88 4.32 116.00 92.3% 104 106 104 106

Virus! 9.70 11.03 78.00 89.1% 104 106 105 105

Exploding Kittens 3.17 4.99 60.00 84.5% 105 106 105 106

Colt Express 2.91 5.46 87.60 87.67% 104 106 104 106

Pandemic 11.15 17.97 138.00 64.97% 102 105 104 105

Results are presented in Tables 1 and 2 (Virus! games were limited to 100 rounds, as random play
can lead to infinite games). The first thing to note is that all games are very fast to execute: most
games can execute over 1 million calls per second to the (usually) most expensive functions (next

11

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

Table 2: Analysis of games, played 1000 times for each possible number of players on each game,
using random agents: game length and reward sparsity

µ6 µ7#decisions #ticks #rounds #APT
Tic-Tac-Toe 7.24 7.61 3.17 1 [0.000, 0.103] sd=0.02
Love Letter 53.22 109.48 6.89 1.96 [0.000, 0.970] sd=0.20

Uno 193.51 540.78 6.07 1 [-0.150, 0.270] sd=0.05
Virus! 317.09 319.56 75.75 1 [0.000, 0.800] sd=0.17

Exploding Kittens 51.86 73.23 8.98 1.07 [-0.500, 0.750] sd=0.11
Colt Express 91.71 176.13 5.00 1.00 [-0.500, 0.500] sd=0.14

Pandemic 108.62 173.94 8.25 5.58 [-1.000, 0.420] sd=0.12

and copy). The games vary in length, with only 7.61 ticks for the simplest game, Tic-Tac-Toe, but
540.78 for Uno. We further see variations in the state size, with Pandemic showing most complex,
while Uno includes the most hidden information. Love Letter shows its strategic complexity
through the higher branching factor, while Exploding Kittens boasts one of the largest spread of
rewards. More complete information and graphical visualisations can be obtained by running the
evaluation.GameReport class included with the framework.
Many of the metrics reported do not paint a complete picture if only their average is given: action
spaces, for example, vary widely during play for most of the games presented. An example which
highlights this is Uno, where the action space is dependent on the number of cards in a player’s
hand, increasing on average as the game goes on (see Figure 6). It is further interesting to note here
that games get shorter with more players (as players would earn more points per round if they have
more opponents, and thus more cards to total the sum of) - an example of insights which can be
obtained through analysis of the games themselves, readily available for any newly implemented
games in the framework.

Figure 6: Action space size in Uno with all player number versions; 1000 runs per version played
by random players.

6 Agents and Algorithms

All implemented players follow a simple interface, only requiring one method to be implemented:
getAction. This receives a game state object reduced to the specific player’s observation of the cur-
rent state of the game. How this reduced game state is built is game-dependent, usually randomising
unknown information. This method expects an action to be returned out of those available and is
called whenever it is the player’s turn and they have more than 1 action available (i.e. the player
actually has a decision to make). If no decision is required, the agent can choose to still receive
and process the information on the game state (in the registerUpdatedObservation function)

12

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

but an action is not requested. They may also choose to implement the initializePlayer and
finalizePlayer functions which are called at the beginning and end of the game, respectively.
Each player has a player ID assigned by the game engine, and they receive the forward model
of the game currently being played. The FM can then be used to advance game states given
actions, compute actions available, or reset a game to its initial state. The rest of this sec-
tion defines the sample players implemented in the framework. These agents use the game’s
score to evaluate game states (as implemented on the game side and accessible through the
observation.getScore(this.getPlayerID()) method call), but their heuristic functions may
be swapped with a different object implementing the IStateHeuristic interface.
The rest of this section describes the different agents implemented for TAG. Performance of the AI
agents described here can be found at [11]

6.1 Human Players

Two types of human interaction are available, both of which interrupt the game loop to wait for
human actions on their turn. Console allows human play using the console. It outputs the game
state and available actions in the console and the player inputs the index of the action they choose
to play. GUI allows human play with a Graphical User Interface, which is game-specific. It uses an
ActionController object to register player action requests, which are then executed in the game.

6.2 Random

The simplest automatic player chooses random actions out of those available on its turn. Its
implementation is as follows:
1 public class RandomPlayer extends AbstractPlayer {
2 private final Random rnd;
3
4 public RandomPlayer ()
5 {
6 this(new Random ());
7 }
8
9 @Override

10 public AbstractAction getAction(AbstractGameState observation) {
11 int randomAction = rnd.nextInt(observation.getActions ().size());
12 List <AbstractAction > actions = observation.getActions ();
13 return actions.get(randomAction);
14 }
15 }

6.3 One Step Look Ahead (OSLA)

A greedy exhaustive search algorithm, it evaluates all actions from a given game state and picks
that which leads to the highest valued state.

6.4 Rolling Horizon Evolutionary Algorithm (RHEA)

RHEA [12] evolves a sequence of L = 10 actions over several generations, choosing the first
action of the best sequence found to play in the game. The algorithm is randomly initialised with a
sequence of actions. At each generation it creates a mutation of the current best solution, keeping
the best solution of the two. This process repeats until the given budget is exhausted.
Given the variable action spaces and that actions available are highly dependent on the current game
state, the mutation operator chooses a gene in the individual (i.e. position in the action sequence)
and changes all actions from that point until the end of the individual to new random valid actions.
The game’s forward model is therefore used in both mutation (to advance the game state given
the last action, in order to find the available actions for the given position in the sequence) and
evaluation (game states reached through the sequence of actions are evaluated using the game’s
heuristic, added up for a discounted total with discount factor γ = 0.9, and this total becomes
the fitness of the individual). It is important to note that RHEA evolves only its own actions and

13

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

opponents are given a random model (with intermediate states after opponent actions ignored in
fitness evaluations).

6.5 Monte Carlo Tree Search (MCTS)

MCTS [13] incrementally builds an asymmetric game tree balanced towards to most promising
parts of the game state space. It uses multiple iterations of four steps: first, it navigates through
the tree, using a tree policy, until reaching a node which is not yet fully expanded; next, it adds a
new random child of this node to the tree; it then performs a Monte Carlo rollout from the new
child (randomly sampling actions until the end of the game or a predetermined depth L = 10); the
state reached at the end of the rollout is evaluated with a heuristic function, and this score is backed
up through all the nodes visited during the iteration. The process is repeated until the budget is
exhausted, and the most visited child of the root is chosen as the action to play.
The version implemented in the framework is closed-loop: it stores game states in each of the nodes.
Further, the rollout step was removed after initial experiments showing an increased performance
without it; therefore, the forward model of the game is only used when expanding a leaf node. The
resulting node is immediately evaluated using the heuristic and its value is backed up through the
tree.

7 Running the framework

This section describes how to run the games/AI in the framework and the different modes available.

7.1 Running a game

The main method in the core.Game class allows for running any game registered in the framework
(i.e. those available in the games.GameType enum).

1. Choose on/off visuals: Set the ActionController ac variable to null if running without visuals,
or leave as-is to enable visuals (if the game has a GUI implemented).

2. Setting the random seed for the game Set the seed variable to the specific seed you wish to
run the game with (or leave to System.currentTimeMillis() for a new random value):
long seed = System.currentTimeMillis();

3. Choose players for the game Add to the players array instances of the agents you wish to run
the game with. HumanConsolePlayer can be used to play as a human interacting with the game
via the console. HumanGUIPlayer can be used to play as a human interacting with the game via the
GUI (if implemented).
1 ArrayList <AbstractPlayer > players = new ArrayList <>();
2 players.add(new RandomPlayer(new Random ()));
3 players.add(new RandomPlayer(new Random ()));
4 players.add(new RandomPlayer(new Random ()));
5 players.add(new OSLA());

4. Run! Choose final parameters for the method call:
1 private static Game runOne(GameType gameToPlay , List <AbstractPlayer > players , long seed ,

ActionController ac, boolean randomizeParameters);

• gameToPlay: the type of the game to play
• players: previously defined players array
• seed: previously defined seed variable
• ac: previously defined ac variable
• randomizeParameters: true if game parameters should be randomized (if implemented

for the game), false otherwise.

14

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

Adjust settings for the following variables in class core.CoreConstants if needed:
1 public final static boolean VERBOSE = true;
2 public final static boolean PARTIAL_OBSERVABLE = false;
3 public final static boolean DISQUALIFY_PLAYER_ON_ILLEGAL_ACTION_PLAYED = false;

Finally, run the core.Game class.

7.2 Running multiple games

To run multiple games, choose one of the following methods, depending on whether you wish to
run with a fixed random seed for all games (1, passing desired seed to the method), with a new
random seed for each run (1, passing null to the seed parameter in the method) or with fixed random
seed for each repetition of each game (2):
1 1. private static void runMany(List <GameType > gamesToPlay , List <AbstractPlayer > players , Long

seed , int nRepetitions , ActionController ac, boolean randomizeParameters)
2 2. private static void runMany(List <GameType > gamesToPlay , List <AbstractPlayer > players , int

nRepetitions , long[] seeds , ActionController ac, boolean randomizeParameters)

Use the chosen function and parameters in the core.Game.main function as before, and run the
Game class.
Note: Games within a specific category can be obtained by using the corresponding Category
method, e.g. GameType.Category.Strategy.getAllGames() would return a list of all games in
the “Strategy" category. Games using a specific mechanic can be obtained by using the correspond-
ing Mechanic method, e.g. GameType.Mechanic.Cooperative.getAllGames() would return a
list of all cooperative games.

7.3 Running tournaments

Tournaments can be run using classes available in the evaluation package. At the time of writing
a round-robin tournament is available, which requires the same setup as running single or multiple
games in the core.Game class, but will pit all the specified players against all others and run several
instances of the given games.

8 Future Directions

The presented framework opens up several directions of research and proposes a variety of chal-
lenges for AI players, be it search/planning or learning algorithms. Its main focus is to promote
research into General Game AI that is able to play many tabletop games at, or surpassing, human
level. Relatedly, the agents should be able to handle both competitive (most common testbeds in
literature), cooperative and even mixed games. For instance, a future planned development is the
inclusion of the game Betrayal at House on the Hill [14], in which the players start off playing
cooperatively to later split into teams mid-way through the game, from which point on they are
competing instead with newly given team win conditions and rules. Most tabletop games include
some degree of hidden information (e.g. face-down decks of cards) and many more players com-
pared to traditional video-game AI testbeds, introducing higher levels of uncertainty. However, such
games often make use of similar mechanics, even if in different forms: thus knowledge transfer
would be a fruitful area to explore, so that AI players can pick up new game rules more easily
based on previous experiences, similar to how humans approach the problem. Some tabletop games
further feature changing rules (e.g. Fluxx [15]) which would require highly adaptive AI players,
able to handle changes in the game engine itself, not only the game state. Many others rely on large
amounts of content and components, for which the process of creating new content or modifying
the current one for balance, improved synergies etc. could be improved with the help of Procedural
Content Generation methods (e.g. cards for the game Magic the Gathering [16] were previously
generated in a mixed-initiative method by [17]).
Specific types of games can also be targeted by research, an option highlighted by TAG’s categori-
sation and labelling of games and their mechanics. Thus AI players could learn to specialise in
games using certain mechanics or in areas not yet explored, such as Role-Playing or Campaign
games (i.e. games played over several linked and progressive sessions). These games often feature

15

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

asymmetric player roles, with a special one highlighted (the dungeon master) whose aim is to
control the enemies in the game in order to not necessarily win, but give the rest of the players the
best experience possible and the right level of challenge. Strategy AI research could see important
applications in this domain, as many tabletop games include elements of strategic planning. Role-
playing games focused more on the story created by players (e.g. Dungeons and Dragons) rather
than combat mechanics (e.g. Gloomhaven) would also be a very engaging and difficult to approach
topic for AI players, where Natural Language Processing research could take an important role.
The framework enables research into parameter optimisation: all parameter classes for games, AI
players or heuristics can implement the ITunableParameters interface; parameters can then be
automatically randomised, or more intelligently tuned by any optimisation algorithm. This allows
for quick and easy exploration of various instances of a problem, a potential increase in AI player
performance, or adaptation of AI player behaviour to user preference.
We have mentioned previously that the games implemented offer reduced observations of the game
state to the AI players, based on what they can currently observe. These hidden information states
(usually) do not keep a history of what was previously revealed to a player. Instead, the AI players
should learn to memorise relevant information and build belief systems, as humans would in a
real-world context - a very interesting direction of research encouraged by TAG.
Lastly, the framework includes the possibility for games to define their states in terms of either vector
observations (IVectorObservation), which enables learning algorithms to be easily integrated
with the framework; or feature-based observations (IFeatureRepresentation), which allows
for more complex algorithms which can perform a search in the feature space of a game, rather than
the usual game state space approached.

Acknowledgements

This work was partly funded by the EPSRC CDT in Intelligent Games and Game Intelligence
(IGGI) EP/L015846/1 and EPSRC research grant EP/T008962/1.

References

[1] Seiji Kanai. Love Letter. Alderac Entertainment Group, 2012.
[2] Christophe Raimbault. Colt Express. Ludonaute, 2014.
[3] Merle Robbins. Uno. AMIGO, 1971.
[4] Domingo Cabrero et al. Virus! El Dragón Azul, 2015.
[5] Matthew Inman et al. Exploding Kittens. Ad Magic, Inc., 2015.
[6] Matt Leacock. Pandemic. Z-Man Games, Inc., 2008.
[7] G. Engelstein and I. Shalev. Building Blocks of Tabletop Game Design: An Encyclopedia of

Mechanisms. CRC Press LLC, 2019.
[8] Fantasy Flight Publishing, Inc. Descent: Journeys in the Dark 2nd Edition. Diamond Comic

Distributors, 2012.
[9] Klaus-Jürgen Wrede. Carcassonne. Hans im Glück, 2000.

[10] Klaus Teuber. The Settlers of Catan. Mayfair Games, 1995.
[11] Raluca D. Gaina, Martin Balla, Alexander Dockhorn, Raul Montoliu, and Diego Perez-Liebana.

TAG: A Tabletop Games Framework. In Proceedings of the AIIDE workshop on Experimental
AI in Games, 2020.

[12] Diego Perez-Liebana, Spyridon Samothrakis, Simon M. Lucas, and Philipp Rolfshagen.
Rolling Horizon Evolution versus Tree Search for Navigation in Single-Player Real-Time
Games. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),
pages 351–358, 2013.

[13] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational
Intelligence and AI in games, 4(1):1–43, 2012.

16

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

[14] Bruce Glassco et al. Betrayal at House on the Hill. Avalon Hill Games, Inc., 2004.
[15] Andrew Looney and Kristin Looney. Fluxx. Looney Labs, 1997.
[16] Richard Garfield. Magic: The Gathering. Wizards of the Coast, 1993.
[17] Adam James Summerville and Michael Mateas. Mystical Tutor: A Magic: The Gather-

ing Design Assistant Via Denoising Sequence-To-Sequence Learning. In Twelfth artificial
intelligence and interactive digital entertainment conference, 2016.

17

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

Appendices

A A Game Example: Love Letter

This section shows some important code snippets from the implementation of Love Letter in TAG.

A.1 Game State: LoveLetterGameState.java

Love Letter adds one game phase on top of default phases:
1 public enum LoveLetterGamePhase implements IGamePhase {
2 Draw
3 }

The game state class defines several different components:
1 // List of cards in player hands
2 List <PartialObservableDeck <LoveLetterCard >> playerHandCards;
3
4 // Discarded cards
5 List <Deck <LoveLetterCard >> playerDiscardCards;
6
7 // Cards in draw pile
8 PartialObservableDeck <LoveLetterCard > drawPile;
9

10 // Cards in the reserve
11 PartialObservableDeck <LoveLetterCard > reserveCards;
12
13 // If true: player cannot be effected by any card effects
14 boolean [] effectProtection;
15
16 // Affection tokens per player
17 int[] affectionTokens;

and a constructor that initializes the parameters, turn order and game phase:
1 public LoveLetterGameState(AbstractParameters gameParameters , int nPlayers) {
2 super(gameParameters , new LoveLetterTurnOrder(nPlayers));
3 gamePhase = Draw;
4 }

As indicated in Section 3.1, the following methods are implemented to retrieve all components:
1 @Override
2 protected List <Component > _getAllComponents () {
3 List <Component > components = new ArrayList <>();
4 components.addAll(playerHandCards);
5 components.addAll(playerDiscardCards);
6 components.add(drawPile);
7 components.add(reserveCards);
8 return components;
9 }

copy a game state for a particular player (defined by a playerId variable):
1 @Override
2 protected AbstractGameState _copy(int playerId) {
3 LoveLetterGameState llgs = new LoveLetterGameState(gameParameters.copy(), getNPlayers ());
4 llgs.drawPile = drawPile.copy();
5 llgs.reserveCards = reserveCards.copy();
6 llgs.playerHandCards = new ArrayList <>();
7 llgs.playerDiscardCards = new ArrayList <>();
8 for (int i = 0; i < getNPlayers (); i++) {
9 llgs.playerHandCards.add(playerHandCards.get(i).copy());

10 llgs.playerDiscardCards.add(playerDiscardCards.get(i).copy());
11 }
12 llgs.effectProtection = effectProtection.clone ();
13 llgs.affectionTokens = affectionTokens.clone();
14
15 if (PARTIAL_OBSERVABLE && playerId != -1) {
16 // Draw pile , some reserve cards and other player ’s hand is possibly hidden. Mix all

together and draw randoms
17 for (int i = 0; i < getNPlayers (); i++) {
18 if (i != playerId && llgs.playerHandCards.get(i).getDeckVisibility ()[playerId]) {
19 // Hide!

18

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

20 llgs.drawPile.add(llgs.playerHandCards.get(i));
21 llgs.playerHandCards.get(i).clear();
22 }
23 }
24 for (int i = 0; i < llgs.reserveCards.getSize (); i++) {
25 if (!llgs.reserveCards.isComponentVisible(i, playerId)) {
26 // Hide!
27 llgs.drawPile.add(llgs.reserveCards.get(i));
28 }
29 }
30 Random r = new Random(llgs.getGameParameters ().getRandomSeed ());
31 llgs.drawPile.shuffle(r);
32 for (int i = 0; i < getNPlayers (); i++) {
33 if (i != playerId && llgs.playerHandCards.get(i).getDeckVisibility ()[playerId]) {
34 // New random cards
35 for (int j = 0; j < playerHandCards.get(i).getSize (); j++) {
36 llgs.playerHandCards.get(i).add(llgs.drawPile.draw());
37 }
38 }
39 }
40 for (int i = 0; i < llgs.reserveCards.getSize (); i++) {
41 if (!llgs.reserveCards.isComponentVisible(i, playerId)) {
42 // New random card
43 llgs.reserveCards.setComponent(i, llgs.drawPile.draw());
44 }
45 }
46 }
47 return llgs;
48 }

The function reset() sets the data structures of the game state to a functional but empty state:
1 @Override
2 protected void _reset () {
3 gamePhase = Draw;
4 playerHandCards = new ArrayList <>();
5 playerDiscardCards = new ArrayList <>();
6 drawPile = null;
7 reserveCards = null;
8 effectProtection = new boolean[getNPlayers ()];
9 }

and the getScore() function uses a helper method to determine the heuristic value of this state:
1 @Override
2 protected double _getScore(int playerId) {
3 return new LoveLetterHeuristic ().evaluateState(this , playerId);
4 }

This heuristic method is defined as follows in games.loveletter.LoveLetterHeuristic.java:
1 public double evaluateState(AbstractGameState gs, int playerId) {
2 LoveLetterGameState llgs = (LoveLetterGameState) gs;
3 LoveLetterParameters llp = (LoveLetterParameters) gs.getGameParameters ();
4 Utils.GameResult playerResult = gs.getPlayerResults ()[playerId];
5
6 if (playerResult == Utils.GameResult.LOSE)
7 return -1;
8 if (playerResult == Utils.GameResult.WIN)
9 return 1;

10
11 double cardValues = 0;
12
13 Random r = new Random(llgs.getGameParameters ().getRandomSeed ());
14 for (LoveLetterCard card: llgs.getPlayerHandCards ().get(playerId).getComponents ()) {
15 if (card.cardType == LoveLetterCard.CardType.Countess) {
16 if (r.nextDouble () > COUNTESS_PLAY_THRESHOLD) {
17 cardValues += LoveLetterCard.CardType.Countess.getValue ();
18 }
19 } else {
20 cardValues += card.cardType.getValue ();
21 }
22 }
23
24 double maxCardValue = 1+llgs.getPlayerHandCards ().get(playerId).getSize () * LoveLetterCard

.CardType.getMaxCardValue ();
25 double nRequiredTokens = (llgs.getNPlayers () -1 < llp.nTokensWin.length ? llp.nTokensWin[

llgs.getNPlayers () -1] :
26 llp.nTokensWin[llp.nTokensWin.length -1]);

19

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

27 if (nRequiredTokens < llgs.affectionTokens[playerId]) nRequiredTokens = llgs.
affectionTokens[playerId];

28
29 return FACTOR_CARDS * (cardValues/maxCardValue) + FACTOR_AFFECTION * (llgs.affectionTokens

[playerId]/ nRequiredTokens);
30 }

A.2 Forward Model: LoveLetterForwardModel.java

The first game state is initialised in the _setup() method:
1 @Override
2 protected void _setup(AbstractGameState firstState) {
3 LoveLetterGameState llgs = (LoveLetterGameState)firstState;
4
5 // Set up all variables
6 llgs.drawPile = new PartialObservableDeck <>("drawPile", llgs.getNPlayers ());
7 llgs.reserveCards = new PartialObservableDeck <>("reserveCards", llgs.getNPlayers ());
8 llgs.affectionTokens = new int[llgs.getNPlayers ()];
9 llgs.playerHandCards = new ArrayList <>(llgs.getNPlayers ());

10 llgs.playerDiscardCards = new ArrayList <>(llgs.getNPlayers ());
11
12 // Set up first round
13 setupRound(llgs , null);
14 }

This setup counts on the auxiliary method setupRound(). This method is separate as it is called
whenever a new round starts in the game, and it sets up a round for the game, including the draw
pile, reserve pile and starting player hands:
1 private void setupRound(LoveLetterGameState llgs , HashSet <Integer > previousWinners) {
2 LoveLetterParameters llp = (LoveLetterParameters) llgs.getGameParameters ();
3
4 // No protection this round
5 llgs.effectProtection = new boolean[llgs.getNPlayers ()];
6
7 // Reset player status
8 for (int i = 0; i < llgs.getNPlayers (); i++) {
9 llgs.setPlayerResult(Utils.GameResult.GAME_ONGOING , i);

10 }
11
12 // Add all cards to the draw pile
13 llgs.drawPile.clear ();
14 for (HashMap.Entry <LoveLetterCard.CardType , Integer > entry : llp.cardCounts.entrySet ()) {
15 for (int i = 0; i < entry.getValue (); i++) {
16 LoveLetterCard card = new LoveLetterCard(entry.getKey ());
17 llgs.drawPile.add(card);
18 }
19 }
20
21 // Put one card to the side , such that player ’s won’t know all cards in the game
22 Random r = new Random(llgs.getGameParameters ().getRandomSeed () + llgs.getTurnOrder ().

getRoundCounter ());
23 llgs.drawPile.shuffle(r);
24 llgs.reserveCards.clear ();
25 llgs.reserveCards.add(llgs.drawPile.draw());
26
27 // In min -player game , N more cards are on the side , but visible to all players at all

times
28 if (llgs.getNPlayers () == GameType.LoveLetter.getMinPlayers ()) {
29 boolean [] fullVisibility = new boolean[llgs.getNPlayers ()];
30 Arrays.fill(fullVisibility , true);
31 for (int i = 0; i < llp.nCardsVisibleReserve; i++) {
32 llgs.reserveCards.add(llgs.drawPile.draw(), fullVisibility);
33 }
34 }
35
36 // Set up player hands and discards
37 llgs.playerHandCards.clear();
38 llgs.playerDiscardCards.clear();
39 for (int i = 0; i < llgs.getNPlayers (); i++) {
40 boolean [] visible = new boolean[llgs.getNPlayers ()];
41 if (PARTIAL_OBSERVABLE) {
42 visible[i] = true;
43 } else {
44 Arrays.fill(visible , true);
45 }
46

20

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

47 // add random cards to the player ’s hand
48 PartialObservableDeck <LoveLetterCard > playerCards = new PartialObservableDeck <>("

playerHand" + i, i, visible);
49 for (int j = 0; j < llp.nCardsPerPlayer; j++) {
50 playerCards.add(llgs.drawPile.draw());
51 }
52 llgs.playerHandCards.add(playerCards);
53
54 // create a player ’s discard pile , which is visible to all players
55 Deck <LoveLetterCard > discardCards = new Deck <>("discardPlayer" + i, i);
56 llgs.playerDiscardCards.add(discardCards);
57 }
58
59 // Game starts with drawing cards
60 llgs.setGamePhase(Draw);
61
62 if (previousWinners != null) {
63 // Random winner starts next round
64 int nextPlayer = r.nextInt(previousWinners.size());
65 int n = -1;
66 for (int i: previousWinners) {
67 n++;
68 if (n == nextPlayer) {
69 llgs.getTurnOrder ().setTurnOwner(i);
70 }
71 }
72 }
73
74 // Update components in the game state
75 llgs.updateComponents ();
76 }

The method that rolls the state forward with a given action, next(), is implemented as follows:

1 @Override
2 protected void _next(AbstractGameState gameState , AbstractAction action) {
3 // each turn begins with the player drawing a card after which one card will be played
4 // switch the phase after each executed action
5 LoveLetterGameState llgs = (LoveLetterGameState) gameState;
6 action.execute(gameState);
7
8 IGamePhase gamePhase = llgs.getGamePhase ();
9 if (gamePhase == Draw) {

10 llgs.setGamePhase(AbstractGameState.DefaultGamePhase.Main);
11 } else if (gamePhase == AbstractGameState.DefaultGamePhase.Main) {
12 llgs.setGamePhase(Draw);
13 llgs.getTurnOrder ().endPlayerTurn(gameState);
14 checkEndOfRound(llgs);
15 } else {
16 throw new IllegalArgumentException("The game phase " + llgs.getGamePhase () +
17 " is not know by LoveLetterForwardModel");
18 }
19 }

Another important method in Love Letter’s forward model is the one in charge of computing the
available actions for a player. The snippet for that method is shown below:

1 @Override
2 protected List <AbstractAction > _computeAvailableActions(AbstractGameState gameState) {
3 LoveLetterGameState llgs = (LoveLetterGameState)gameState;
4 ArrayList <AbstractAction > actions;
5 int player = gameState.getTurnOrder ().getCurrentPlayer(gameState);
6 if (gameState.getGamePhase ().equals(AbstractGameState.DefaultGamePhase.Main)) {
7 actions = playerActions(llgs , player);
8 } else if (gameState.getGamePhase ().equals(LoveLetterGameState.LoveLetterGamePhase.Draw))

{
9 // In draw phase , the players can only draw cards.

10 actions = new ArrayList <>();
11 actions.add(new DrawCard(llgs.drawPile.getComponentID (), llgs.playerHandCards.get(

player).getComponentID (), 0));
12 } else {
13 throw new IllegalArgumentException(gameState.getGamePhase ().toString () + " is unknown

to LoveLetterGameState");
14 }
15
16 return actions;
17 }

21

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

In Love Letter, the actions available depend on the card the player holds. Here’s an extract of the
method playerActions() that _computeAvailableActions() uses:
1 switch (playerDeck.getComponents ().get(card).cardType) {
2 case Priest:
3 for (int targetPlayer = 0; targetPlayer < llgs.getNPlayers (); targetPlayer ++) {
4 if (targetPlayer == playerID || llgs.getPlayerResults ()[targetPlayer] == Utils

.GameResult.LOSE)
5 continue;
6 actions.add(new PriestAction(playerDeck.getComponentID (),
7 playerDiscardPile.getComponentID (), card , targetPlayer));
8 }
9 break;

10
11 case Guard:
12 for (int targetPlayer = 0; targetPlayer < llgs.getNPlayers (); targetPlayer ++) {
13 if (targetPlayer == playerID || llgs.getPlayerResults ()[targetPlayer] == Utils

.GameResult.LOSE)
14 continue;
15 for (LoveLetterCard.CardType type : LoveLetterCard.CardType.values ())
16 actions.add(new GuardAction(playerDeck.getComponentID (),
17 playerDiscardPile.getComponentID (), card , targetPlayer , type));
18 }
19 break;
20
21 case Baron:
22 for (int targetPlayer = 0; targetPlayer < llgs.getNPlayers (); targetPlayer ++) {
23 if (targetPlayer == playerID || llgs.getPlayerResults ()[targetPlayer] == Utils

.GameResult.LOSE)
24 continue;
25 actions.add(new BaronAction(playerDeck.getComponentID (),
26 playerDiscardPile.getComponentID (), card , targetPlayer));
27 }
28 break;
29
30 case Handmaid:
31 actions.add(new HandmaidAction(playerDeck.getComponentID (),
32 playerDiscardPile.getComponentID (), card));
33 break;
34
35 case Prince:
36 for (int targetPlayer = 0; targetPlayer < llgs.getNPlayers (); targetPlayer ++) {
37 if (targetPlayer == playerID || llgs.getPlayerResults ()[targetPlayer] == Utils

.GameResult.LOSE)
38 continue;
39 actions.add(new PrinceAction(playerDeck.getComponentID (),
40 playerDiscardPile.getComponentID (), card , targetPlayer));
41 }
42 break;
43
44 case King:
45 for (int targetPlayer = 0; targetPlayer < llgs.getNPlayers (); targetPlayer ++) {
46 if (targetPlayer == playerID || llgs.getPlayerResults ()[targetPlayer] == Utils

.GameResult.LOSE)
47 continue;
48 actions.add(new KingAction(playerDeck.getComponentID (),
49 playerDiscardPile.getComponentID (), card , targetPlayer));
50 }
51 break;
52
53 case Countess:
54 actions.add(new CountessAction(playerDeck.getComponentID (),
55 playerDiscardPile.getComponentID (), card));
56 break;
57
58 case Princess:
59 actions.add(new PrincessAction(playerDeck.getComponentID (),
60 playerDiscardPile.getComponentID (), card));
61 break;

22

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

A.3 Actions in Love Letter

Here are some actions that are exclusive to the game Love Letter. Actions can extend other actions
provided within TAG, enhancing their functionality. For instance, the following DrawCard action
modifies the execution of a regular drawing card move to set certain values in the game state.
1 public class DrawCard extends core.actions.DrawCard implements IPrintable {
2
3 public DrawCard(int deckFrom , int deckTo , int fromIndex) {
4 super(deckFrom , deckTo , fromIndex);
5 }
6
7 @Override
8 public boolean execute(AbstractGameState gs) {
9 ((LoveLetterGameState)gs).setProtection(gs.getTurnOrder ().getCurrentPlayer(gs), false)

;
10 return super.execute(gs);
11 }
12
13 @Override
14 public String getString(AbstractGameState gameState) {
15 return "Draw a card and remove protection status.";
16 }
17
18 @Override
19 public String toString () {
20 return "Draw a card and remove protection status.";
21 }
22
23 @Override
24 public void printToConsole(AbstractGameState gameState) {
25 System.out.println(toString ());
26 }
27
28 @Override
29 public AbstractAction copy() {
30 return new DrawCard(deckFrom , deckTo , fromIndex);
31 }
32 }

This DrawCard action is further extended to provide particular effects for each action in the game.
For instance, in Love Letter, the execute() function for playing a Baron card is implemented as
follows:
1 @Override
2 public boolean execute(AbstractGameState gs) {
3 LoveLetterGameState llgs = (LoveLetterGameState)gs;
4 int playerID = gs.getTurnOrder ().getCurrentPlayer(gs);
5 Deck <LoveLetterCard > playerDeck = llgs.getPlayerHandCards ().get(playerID);
6 Deck <LoveLetterCard > opponentDeck = llgs.getPlayerHandCards ().get(opponentID);
7
8 // compares the value of the player ’s hand card with another player ’s hand card
9 // the player with the lesser valued card will be removed from the game

10 if (llgs.isNotProtected(opponentID) && gs.getPlayerResults ()[playerID] != Utils.GameResult
.LOSE){

11 LoveLetterCard opponentCard = opponentDeck.peek();
12 LoveLetterCard playerCard = playerDeck.peek();
13 if (opponentCard != null && playerCard != null) {
14 if (opponentCard.cardType.getValue () < playerCard.cardType.getValue ())
15 llgs.killPlayer(opponentID);
16 else if (playerCard.cardType.getValue () < opponentCard.cardType.getValue ())
17 llgs.killPlayer(playerID);
18 } else {
19 throw new IllegalArgumentException("player with ID " + opponentID + " was targeted

using a Baron card" +
20 " but one of the players has now cards left.");
21 }
22 }
23
24 return super.execute(gs);
25 }

23

DESIGN AND IMPLEMENTATION OF TAG: A TABLETOP GAMES FRAMEWORK

Other actions are simpler, such as playing a Guard card:
1 @Override
2 public boolean execute(AbstractGameState gs) {
3 LoveLetterGameState llgs = (LoveLetterGameState)gs;
4 Deck <LoveLetterCard > opponentDeck = llgs.getPlayerHandCards ().get(opponentID);
5
6 // guess the opponent ’s card and remove the opponent from play if the guess was correct
7 if (llgs.isNotProtected(opponentID)){
8 LoveLetterCard card = opponentDeck.peek();
9 if (card.cardType == this.cardType) {

10 llgs.killPlayer(opponentID);
11 }
12 }
13 return super.execute(gs);
14 }

or a Priest card:
1 @Override
2 public boolean execute(AbstractGameState gs) {
3 LoveLetterGameState llgs = (LoveLetterGameState)gs;
4 int playerID = gs.getTurnOrder ().getCurrentPlayer(gs);
5 PartialObservableDeck <LoveLetterCard > opponentDeck = llgs.getPlayerHandCards ().get(

opponentID);
6
7 // Set all cards to be visible by the current player
8 if (((LoveLetterGameState) gs).isNotProtected(opponentID)){
9 for (int i = 0; i < opponentDeck.getComponents ().size(); i++)

10 opponentDeck.setVisibilityOfComponent(i, playerID , true);
11 }
12
13 return super.execute(gs);
14 }

24

	How to use this Document?
	TAG and Tabletop Games
	Implementing Games in TAG
	Game State
	Forward Model
	Actions
	Other modules

	Games
	Tic-Tac-Toe
	Love Letter game:loveletter
	Colt Express game:coltexpress
	Uno game:uno
	Virus! game:virus
	Exploding Kittens game:kittens
	Pandemic game:pandemic

	Game Analysis
	Agents and Algorithms
	Human Players
	Random
	One Step Look Ahead (OSLA)
	Rolling Horizon Evolutionary Algorithm (RHEA)
	Monte Carlo Tree Search (MCTS)

	Running the framework
	Running a game
	Running multiple games
	Running tournaments

	Future Directions
	References
	A Game Example: Love Letter
	Game State
	Forward Model
	Actions in Love Letter

