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Abstract—In this paper, we are going to explain the design
process for our GVGAI game-learning agent, which is going to
be submitted to the GVGAI competition’s learning track 2020.
The agent relies on a local forward modeling approach, which
uses predictions of future game-states to allow the application
of simulation-based search algorithms. We first explain our
process in identifying repeating tiles throughout a pixel-based
state observation. Using the tile information, a local forward
model is trained to predict the future state of each tile based on
its current state and its surrounding tiles. We accompany this
approach with a simple reward model, which determines the
expected reward of a predicted state transition. The proposed
approach has been tested using multiple games of the GVGAI
framework. Results show that the approach seems to be especially
feasible for learning how to play deterministic games. Except
for one non-deterministic game, the agent performance is very
similar to agents using the true forward model. Nevertheless, the
prediction accuracy needs to be further improved to facilitate a
better game-playing performance.

Index Terms—Local Forward Model, Rolling Horizon Evolu-
tionary Algorithm, General Game Learning, GVGAI framework

I. INTRODUCTION

The General Video Game AI (GVGAI) framework [1]
and its accompanying competition were created to study
the development of general game-playing agents. Over the
course of seven years, many competition tracks have been
evolved, each focusing on a specific aspect of general game
AI. The GVGAI competition’s game-learning track, which
was introduced in 2017, challenges agents to learn how to
play several games by playing them. During training, an agent
receives a visual representation of the current state and needs
to choose its actions accordingly. It receives feedback in the
form of rewards, and information on whether the game has
been won or lost.

In contrast to the GVGAI competition’s game-playing track,
agents do not receive access to the game’s forward model.
Therefore, they are not inherently able to predict the outcome
of their actions. This restriction has rendered agents, which
rely on simulation-based search, ineffective. During the first
two years of the learning-track, an agent’s training process
was limited to 5 minutes of real-time game-playing. None of
the submitted approaches had resulted in significantly better
game-play than a random agent [2].

These tough limitations on the agents’ training time were
lifted in 2019. Since then, agents can use unlimited training time

given two training levels per game. This allowed the application
of deep reinforcement learning agents, which have been shown
capable of learning to play several games of the GVGAI
framework [3]. Deep reinforcement learning agents train a
neural network to approximate the expected return of an action.
Due to a large number of model parameters, these techniques
often require a lot of training time and a diverse set of training
examples. While [3] has shown successful applications for
some GVGAI games, results of reinforcement learning agents
are often overshadowed by the agents’ performance in the
competition’s game-playing track [2].

In this paper, we are going to explore the applicability of
forward model learning to apply simulation-based search in
a game-learning scenario. With forward model learning the
agent tries to predict the outcome of its actions based on
previously observed interactions with the environment. During
training, the outcome of each action is observed and used to
approximate the environment’s response in terms of state and
reward changes. In contrast to reinforcement learning-based
approaches, the agent determines the value of its actions at
run-time by rating action sequences based on their predicted
outcome. For this purpose, any search algorithm can be used
in conjunction with the trained forward model simulating the
action’s influence on the environment.

In recent works, many attempts have been made to learn
accurate and reliable forward models for various game-like
environments. Ha and Schmidhuber [4] have used auto-encoders
and recurrent neural networks to predict the upcoming frames
of several games of OpenAI’s gym framework [5]. Similarly,
generative state-space models [6]–[9] have been used to facili-
tate planning in simulated environments. Instead of modeling
the outcome of a state transition, neural GPU models [10]
have been used to model the operations required for each state
transition. These models have proven to create reliable models
for multiple games of the GVGAI framework [11].

Last on our list are local model approaches. Those consider
a game-state transition to consist of many independent local
interactions among observable entities. While the independence
assumption limits the generality of local forward models, it
also results in considerably higher sampling efficiency. This
makes them especially interesting for the application in the
GVGAI learning track since the number of available training
levels is very limited. In [12] and [13] a local forward model
has been used to model state transitions of the Game of Life
and Sokoban, respectively. Initial tests on games of the GVGAI
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(a) golddigger (b) treasurekeeper (c) waterpuzzle

Fig. 1: initial game-state of the first level of each game of the 2020 GVGAI’s game-learning track

framework [12] have shown that local forward models quickly
identify a large number of predictable patterns, but require
more work in terms of generalization to unknown game-states.

In this paper, we are further going to explore the capabilities
of local forward agents and how they can be trained efficiently.
The main contributions of this paper are:

• an automatic pre-processing of pixel-based state observa-
tions into tile-based state observations

• an efficient process for learning local forward models for
deterministic games

• a simple reward model based on predicted state transitions
• a case-study on learning local forward models in the

context of multiple games of the GVGAI framework
To better explain the context of this work, we will first

describe the GVGAI framework in Section II and the games of
the 2020 GVGAI competition’s learning track in Section II-A.
The remainder of this paper will focus on the design process of
our proposed agent (Section III), its training (Section IV), and
the evaluation of its game-playing performance (Section V)
followed by our conclusion in Section VI.

II. GVGAI FRAMEWORK

The General Video Game AI (GVGAI) framework [1],
developed in 2014, was created to provide a unique test-bed
for general game-playing agents. Games are defined using
the Video Game Definition Language [14], which allows the
description of 2-dimensional arcade-like video games. At the
time of writing this work, the GVGAI framework provides a
unified interface for more than 100 games.

Experiments of this paper will be based on the Python
client of the GVGAI single-player learning track [15]. While
games are run on a Java server, the client receives a visual
representation of the current state, the set of available actions,
the agent’s reward, and, in case of a terminal state, additional
information on the game’s outcome (win, loss, or timeout).

A. GVGAI Learning Track

The 2020’s GVGAI learning track features three games,
namely golddigger, treasurekeeper, and waterpuzzle. In the
following, we will shortly introduce these games.

In golddigger (Fig. 1a) the agent needs to dig out gold coins
and diamonds while staying away from multiple randomly
moving enemies. In contrast to many other games, the agent’s

avatar can only move in its current viewing direction. In case
the agent attempts to move in another direction, it first changes
its orientation (indicated by a small arrowhead). Using the
action a second time moves the character in the indicated
direction. After collecting a key, the agent can open chests
to increase its score. However, some of the chests are traps
and will transform into an enemy when the agent attempts to
open them. Additionally, the game includes dirt tiles, which
block the agent’s movement. Dirt tiles can be removed by the
agent using a shovel, which will destroy the neighboring dirt
tile in direction of view. Similarly, the action can be used to
gather neighboring gold coins and diamonds or to kill enemies
for scoring points. The agent wins the game in case all coins,
diamonds, and chests have been collected and loses the game
when getting in contact with an enemy.

The game treasurekeeper (Fig. 1b) turns the concept of
the previous game up-side-down. Here, the randomly moving
enemies try to steal the treasure chest from the player. Since
the agent has no direct way of stopping the enemies, it needs
to push boxes around to block their path, while trying to avoid
touching enemies. Every 100 game-ticks the agent receives 5
points and wins the games after surviving 600 game-ticks with
at least one treasure chest remaining.

In waterpuzzle (Fig. 1c) the agent needs to traverse a maze
to reach the exit. The latter is marked by a closed door, which
can only be opened using a key. Collecting the key rewards
the agent with 5 points, while opening the door rewards an
additional 10 points and wins the game. The game is lost after
failing to escape the maze in less than 1500 time-steps.

For each of these games, the competition provides two
training levels, of which the first level is shown in Fig. 1.
Before the final competition, the submission page ranks agents
according to their performance on two previously unseen
test levels. This allows tuning the agent’s parameters without
overfitting it to the secret test levels. The final ranking will
be determined using a third validation level. While being
unavailable at the time of writing this paper, these levels will
be made available as soon as the competition finishes.

The agents’ ranking is determined by their win-rate, their
average score, and the length of played games. The highest
priority is given to maximizing the agent’s win-rate. If two
agents perform similarly well, the second criterion is the
number of points they have achieved (max). The third tie-
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Fig. 2: Extracting tile maps for a simplified game-state of the GVGAI game golddigger for various tile sizes.

breaker is the agent’s average number of ticks until a game
has been won (min), while the last distinguishing feature is
the average number of ticks until a game has been lost (max).

III. AGENT DESIGN PROCESS

The proposed agent model relies on the accurate prediction
of future game-states to enable the application of simulation-
based search. Search algorithms have shown good results in
many of the GVGAI competition game-playing in which the
game’s forward model is accessible to the agent.

In this section, we describe the underlying design process
for our agent model. Specifically, we will first introduce the
preprocessing of the state observation in Section III-A. Given
the preprocessed state, we describe how the agent will use local
forward models to predict an action’s outcome (Section III-B).
Using a reward model, the agent will be able to predict
the expected reward of a state transition given the changes
in between the original state and the predicted upcoming
state (Section III-C). After the detailed introduction of each
component, we will introduce the agent model in Section III-D
and our devised training procedure in Section IV.

A. Preprocessing the State Observation

During each time-step of the game, the agent is being
provided with a pixel-based representation of the current game-
state. The provided image represents the whole level, such
that no camera movement needs to be considered throughout
playing the game. While a local forward model could directly
be applied to the pixel information, the state of GVGAI games
can often be condensed to a more efficient representation, i.e.
a tile-based representation.

Many 2D-games use tile maps to represent levels. A tile set
is a collection of tiles, each representing an elementary sub-
graphic of usually equal size. In a tile map, each of the unique
tiles is referred to by a unique ID. Instead of defining, the
level in terms of a pixel-based representation, it is composed
of each tile’s ID. In fact the GVGAI framework implements
the video game definition language (VGDL), which in turn
uses a tile-based representation to encode levels.

Since the agent is unaware of the underlying tile map it
will be required to reconstruct it throughout the course of its
training. In case the agent knows the tile size, this process is
fairly simple. The provided image can first be cut into evenly

sized tiles. Furthermore, a tile map is created by collecting all
unique tiles among these cuts and assigning them an ID. Since
the tile size is unknown to the agent, we repeat this process
for all true divisors of the input image’s width and height. In
Fig. 2 we show this process and its result given an exemplary
game-state of the game golddigger for two different tile sizes.
The process will be repeated for every observed game-state to
construct a more reliable tile map.

Extracted tile maps are compared given their number of
unique tiles and their tile size. While a small number of unique
tiles helps to keep the final model simple, a large tile size
is desirable to reduce the size of the input matrix as much
as possible. For all the provided games, a tile size of 10 has
shown to be a good trade-off between tile size, number of
unique tiles, and the resulting model’s complexity. In fact it
resembles the framework’s original tile size. The extracted tile
map is further used to reduce the pixel-based observation1 of
size (n,m, 4) to a tile-based observation of size (n/10,m/10).

1) Noisy Images due to Image Compression: During ex-
tensive testing of the approach described above, we saw that
some of the extracted tiles are very similar to each other.
This can be the result of an object’s animation-steps or noise
introduced due to image compression or anti-aliasing. To get
a more stable result, we relaxed the equality-condition for
extracted slices. Instead of requiring two tiles to be completely
similar to each other, we consider two tiles to be the same
in case the correlation between their pixel values if higher
than a given threshold. Good results were achieved for setting
the threshold at a value of 0.85, which was low enough to
identify all semantically different tiles, but high enough to
merge different representations of the same tile.

B. Local Forward Models for Predicting Upcoming States

Local forward models have first been studied in the context
of Conway’s Game of Life [12]. The Game of Life is a cellular
automaton in which an initial configuration evolves given a
simple set of rules. Hereby, every cell interacts with its eight
neighbors (Moore neighborhood) to determine its future state.
In turn, the next game-state can be determined by separately
handling each cell and aggregating the results. Both the locality

1for which the first two dimensions describe the position of a pixel and the
third dimension its RGB-color and alpha-channel
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before 6 4 1 1
after 6 5 1 0
created 0 1 1 0
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Fig. 3: Predicting the next game-state using a cross-shaped neighborhood of span 1 and the reward model’s input pattern.

Fig. 4: Local neighborhood patterns of span 1 and 2 (including
the centre tile) used to predict the next state of the centre tile.

of a cell’s interaction and the aggregation process, are the
underlying principles of local forward models.

A local forward model predicts the upcoming state of a
cell given the state of its neighboring cells, whereas the
neighborhood pattern can deviate from the classical Moore
neighborhood. In this work, we will be using the cross-shaped
pattern shown in Fig. 4, which has been successfully applied in
a previous study on the game Sokoban [13]. The span length
will be chosen according to the game being played.

1) Recording a Training Data Set: In the context of
the proposed agent, we will be using the tile-based state
representation constructed in Section III-A as an input of the
local forward model’s learning process. Given an observed
state transition, we extract the neighborhood pattern of each
cell and its resulting future state. Since the outcome can be
dependent on the agent’s action, we extend the neighborhood
pattern by the action used during the last state-transition. The
resulting input pattern and its recorded outcome are added
to the models training data set.2 The pattern extraction and
prediction process is shown in Fig. 3a-c.

In the case of a non-deterministic game, the outcome of a
pattern can vary in between multiple observed transitions. As
a result, we will not store the latest observed outcome, but the
occurrence count of all observed outcomes per input pattern.

2) Learning a Local Forward Model: Given the training
data recorded in the previous subsection, we can render the
prediction of upcoming tiles as a classification task. For a
deterministic game, we learn a model that maps an input

2Note, that the term neighborhood pattern refers to all cells considered to
be neighbors of the current cell, while the term input pattern includes the
agent’s action.

pattern, consisting of a cell’s neighborhood and the agent’s
action, to the future state of the cell. We chose to use decision
trees since they are quickly generated, can be applied fast and
allow batch-processing of multiple input patterns during the
prediction of upcoming states.

In the case of a non-deterministic game, we train a proba-
bilistic classifier that maps the input pattern to the probability
of the middle cell to become a certain tile type. When asked
to predict an upcoming game-state, we sample the outcome of
each cell respective to their expected probability vector.

Since the prediction of each cell is independent of the
future state of other cells, the probabilistic prediction can
yield unintuitive results. Fig. 5 shows an exemplary game-state,
which consists of a single randomly moving enemy. Since the
enemy could move in every cardinal direction, the cells below,
right, left, and above the enemy have the chance of containing
the enemy during the next turn. The probabilistic nature of
predicting the next turn can result in the enemy disappearing
or duplicating, as seen in Fig. 5d. Therefore, the application
of a repair operator may be necessary to assure the validity of
a predicted game-state. However, generating or learning such
repair operators is beyond the scope of this work.

C. Reward Model for Predicting Upcoming Rewards

Next to the agent’s local forward model, which predicts
upcoming states, we implement a reward model to predict
upcoming rewards of predicted state transitions. The input of
our reward model will be the states before and after a state
transition. In GVGAI games, tiles often represent separate game
objects. Since reward functions of the GVGAI framework are
often linked to interactions between such objects, we chose to
use the occurrence counts of all tiles in the tile map to predict
the reward.

For each tile in the tile map we extract the following values:
• its occurrence count in the state before the transition
• its occurrence count in the state after the transition
• the number of tiles that have become this tile type
• the number of tiles that are no longer of this tile type

Fig. 3d shows an exemplary game-state transition of the game
waterpuzzle and the resulting occurrence counts per tile type.
The values of the table are flattened into a one-dimensional
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Fig. 5: example states of the game golddigger and the
probabilistic predictions of a local forward model

input vector for the reward model. Additionally, we record the
observed reward received during the state-transition to mark
the expected output of said input vector. Finally, any regression
or classification model can be used to predict the reward based
on the extracted occurrence vector.

To further highlight the importance of terminal states, we
chose to modify the expected output of the reward model. For
profitable game state transitions, we add the arbitrarily chosen
large number 1000 to the expected output, while we subtract
1000 for transitions that result in a loss. We observed that this
change helped the agent in prioritizing action sequences that
let the agent win, while strictly avoiding situations in which it
expects to lose.

D. Agent Model

In the following, we describe how the components introduced
in the previous subsections are combined in our proposed agent.

Given a new game-state, the agent will first convert the
pixel-based state observation into a tile-based state observation.
During training, each tile that has not yet been observed by
the agent is added to the agent’s tile map and given a unique
identifier. At the time of evaluating the agent, we will not
add further tiles. Instead, we classify each tile according to
its closest match with previously observed tiles. This results
in problems in case new objects are introduced in later levels.
However, adding new classes to the tile map would confuse
the classifier when predicting the next state.

By replacing the game’s true forward model with a combi-
nation of a trained local forward and reward model, we are
able to predict the expected outcome of the agent’s actions.
Since no such model will be available right from the start of
the training, the first interactions with the game-state can be
done at random. As soon as the results of these actions have
been observed, we can record observed patterns, compile a
training data set, and train the respective models. Details on
the agent’s training process can be found in Section IV.

In case a model is already available, we can apply any search
method to optimize the agent’s action sequence. Given an action

and a tile-based game-state, we first apply the local forward
model to predict the expected upcoming game-state. Using both,
the current and the upcoming game-state, as input for the reward
model, we can predict the expected reward of said transition.
Predicting the resulting score of a single action allows a greedy
action-selection. However, since we predict the upcoming state,
we can consecutively apply these models to predict the outcome
of whole action sequences, and therefore, apply any search
method. In this work, we will be using breadth-first search
(BFS) for games that appear deterministic and the rolling
horizon evolutionary algorithm (RHEA) for non-deterministic
games. At the beginning of the agent’s training each game is
considered to be deterministic until any observation proves him
wrong. Both search algorithms have previously been applied
in agents of the GVGAI competition’s game-playing track [2],
[16], [17].

Note that, during the search we do not require further
applications of the tile map since all computations are based on
the tile-based state representation. Nevertheless, the tile map
allows us to visualize any of the predicted states by replacing
each cell with the pixel-based representation of its encoded
tile. This allows us to visualize the agent’s search path and
retrace the choice of an action sequence based on its predicted
outcome.

After the action has been applied to the game and the
agent observes the true outcome of its action, the search tree
can be updated in case of mistaken predictions. Furthermore,
anytime a previously unknown pattern has been observed, we
can update the models’ training data given the new observation.
Unfortunately, the tight time constraints of the competition
(40ms per game-tick) do not allow us to update the model
during evaluation. Hence, we will omit this step.

IV. TRAINING THE AGENT

The framework provides two training levels for each of the
competition’s games. Since the GVGAI framework allows the
generation of new levels, we create additional training levels
by mirroring and rotating the original levels. This allows us to
diversify the training data and teach the agent about symmetric
relationships in its local forward and reward model. All the
level files and a visualization of their initial game-state can be
found in the project’s GitHub repository [18].

We began the training by building a data set based on
observed interactions of a random agent. However, this resulted
in a poor exploration of levels and yielded models which
were rarely able to predict previously unseen patterns correctly.
For example, in the game golddigger the random agent never
reached the gold coins, which were several tiles away from its
starting position. While we could technically give the agent
more training time and therefore increase the likelihood of
observing rare patterns, we chose to improve the efficiency
of the training process. We want to achieve this by giving
the agent an internal drive to increase the number of unique
observed patterns for the local forward and the reward model.

We achieved this, by constructing a search tree based on the
agent’s previously observed patterns. For each state in which



all patterns are known, we extend the search tree by another
child-node. In case a state includes unknown patterns, we count
the number of unique patterns and use this as the explorative
value of that state. Each time a new pattern has been observed,
we check for all the states that can be expanded and recursively
add their child nodes until we reach an unexpandable node.

Especially in deterministic games, this search process yields
a more diverse exploration of the game-tree. Additionally, the
agent can decide to stop the level’s exploration as soon as it
is known that there are no more patterns to be explored.

In case of non-deterministic games, we face the problem
that the agent can never be sure that another rare outcome for
a given pattern exists. Nevertheless, adding more observations
increases the agent’s confidence in its estimation of pattern
outcomes. Therefore, during training, we favor states including
unknown patterns but rely on a random exploration in case all
patterns are known.

V. EVALUATION

Submitted agents will be validated based on their perfor-
mance in two test levels. The final ranking will be determined
based on the agent’s performance in a third validation level.
Since these are unavailable at the time of submitting this paper,
we can only provide the agent’s results in the two training
levels. Additionally, we validate the proposed approach using
six other games of the GVGAI framework. We specifically
selected games that implement similar game-mechanics as the
three test games of the competition’s learning-track. In the
following, we shortly introduce chosen games.

The games labyrinth and labyrinthdual were chosen due to
their similarities with the game waterpuzzle. They represent
games in which a maze needs to be traversed by the agent. In
labyrinth the agent needs to reach a flagpole while avoiding
to step on any of the spike-traps. In labyrinthdual the maze’s
paths can be blocked by colored obstacles. These can only
be passed in case the agent wears a cloak of the same color.
Similarly colored houses allow the agent to change its cloak
color accordingly but disappear after they have been used.

The games bait and sokoban were selected since they require
the agent to push objects to designated locations. The same
skill is required in the game treasurekeeper. In bait the agent
needs to collect a key to escape the dungeon by opening the
door. To reach the key, the agent needs to push boxes out of the
way. Later levels include holes that can be filled by pushing a
box into them. Similarly, the game sokoban requires the agent
to push boxes to a target tile. As soon as a box is pushed on
a target, the box disappears and the agent receives a point.

The games boulderdash and zelda share similarities with the
game golddigger. In boulderdash the agent can remove blocks
by digging through them. Additionally, collecting diamonds
rewards the agent with points, while touching an enemy loses
the game. In zelda the agent needs to escape a dungeon through
a door. Both games allow the agent to kill neighboring enemies
to score more points. Since all enemies are moving in random
directions, these games are non-deterministic.

For the deterministic games waterpuzzle, labyrinth, labyrinth-
dual, and bait we applied the optimized search process
described Section IV. The game sokoban uses a deterministic
rule-set as well. However, its pixel-based state observation does
not allow to discriminate the case in which the agent’s avatar
is standing on an otherwise empty floor tile or a target position.
Therefore, the game looks non-deterministic to the observer. As
a result, we use the training process for non-deterministic games
on the games sokoban, golddigger, treasurekeeper, boulderdash,
and zelda.

During the evaluation, we use a BFS with 100 expansions
per game-tick for deterministic games and RHEA with a
horizon of 5 and 20 candidate solutions per game-tick for
non-deterministic games. This results in the same number of
forward model calls per game-tick. However, the BFS agent
is able to achieve a higher search depth, due to continuously
expanding the search-tree over the course of multiple game-
ticks. The relatively small number of expansions was chosen
to complete the search during each tick in about 40ms. Both
agents use a discount of 0.99.

A. Results

For the games waterpuzzle, treasurekeeper, and golddigger
we report the agent’s average score on 20 runs per level. The
results are compared to results of agents trained with one of the
reinforcement learning algorithms DQN [19], A2C [20], and
PPO2 [21] as well as base-line implementations of Random
Search (RS), RHEA, Monte Carlo Tree Search (MCTS) [22],
and OpenLoop MCTS (OLETS) [23] using the true forward
model. Their performance values, as well as the baseline
performance of a random agent, have been taken from the
competition framework’s GitHub repository [24]. Table I shows
the average score of all tested agents on the two levels they
were trained on.

A similar evaluation was done for the six other games of
the GVGAI framework. Here, we focused on the comparison
with search-based algorithms to highlight the performance
differences of replacing the true forward model with a learned
approximation. In Table II, we recorded the agent’s win-rate
and the average score per agent over 20 runs per level. Note,
that the proposed agent has only been trained on the first two
levels (and its rotated and mirrored copies).

B. Discussion

Our results show that the proposed agent is capable of
learning to play several games of the framework based
on a pixel-based state observation. It performed best for
deterministic games in which an accurate forward model has
been extracted. This is especially true for the maze-like games
waterpuzzle, labyrinth, and labyrinthdual in which the agent
performed best among all tested agents. Here, the forward
model consists of the avatar’s movement and the collection of
items. Such interactions in a tile-based state perfectly match
the assumptions of the local forward model and therefore are
easy to extract during training. In return, they transfer well
to previously unobserved levels, which is indicated by the



TABLE I: Agents’ average scores on games of the 2020 GVGAI competition’s game-learning track. Results were computed
based on 20 consecutive runs of each agent. Reported values of reinforcement learning agents, true forward model agents,
and the random agent were taken from the competition’s Github repository [24]. Values of the best agent(s) per row were
highlighted for better visibility.

Game Level Proposed Reinforcement Learning True Forward Model
Agent DQN A2C PPO2 RS RHEA MCTS OLETS Random

waterpuzzle 0 15.0 0 0.5 0 5.5 6.5 8.5 15 3.5
waterpuzzle 1 15.0 0 1 0 4.75 4.75 6.75 11 2.5

treasurekeeper 0 7.75 30 2.5 17 2.25 2.4 2.35 0.45 0.75
treasurekeeper 1 6.0 2.25 2 0.75 1.75 2 1 0 0.75

golddigger 0 7.45 -1.7 15.9 -2.9 149.6 130 154 164.6 4.8
golddigger 1 4.4 0 8.15 -3.25 64.9 61.5 67.4 88.9 8.2

TABLE II: Results (win-rate / average score) on six games of the GVGAI framework. Results were computed based on 20
consecutive runs of each agent. Values of the best agent(s) per row were highlighted for better visibility.

Game Level Proposed True Forward Model
Agent RS RHEA MCTS OLETS Random

labyrinth 0 1.0 / 1.0 0.05 / -0.8 0.0 / -0.9 0.0 / -0.95 0.05 / -0.85 0.0 / -0.85
labyrinth 1 1.0 / 1.0 0.0 / -0.45 0.0 / -0.55 0.0 / -0.55 0.0 / -0.8 0.0 / -0.65
labyrinth 2 1.0 / 1.0 0.0 / -0.85 0.0 / -0.85 0.0 / -0.9 0.0 / -0.85 0.0 / -0.9
labyrinth 3 1.0 / 1.0 0.2 / -0.55 0.1 / -0.7 0.1 / -0.7 0.15 / -0.65 0.1 / -0.6
labyrinth 4 1.0 / 1.0 0.0 / -1.0 0.0 / -1.0 0.0 / -1.0 0.0 / -1.0 0.0 / -1.0

labyrinthdual 0 1.0 / 7.0 0.0 / -0.65 0.0 / -0.25 0.0 / -0.8 0.0 / -0.75 0.0 / -0.3
labyrinthdual 1 1.0 / 4.0 0.0 / 1.9 0.0 / 1.6 0.0 / 1.7 0.0 / 1.55 0.0 / 1.7
labyrinthdual 2 1.0 / 7.0 0.0 / 2.0 0.0 / 2.0 0.0 / 2.0 0.0 / 2.0 0.0 / 2.0
labyrinthdual 3 0.75 / 5.75 0.0 / -0.85 0.0 / -0.85 0.0 / -1.0 0.0 / -1.0 0.0 / -0.85
labyrinthdual 4 1.0 / 4.0 0.0 / -1.0 0.0 / -1.0 0.0 / -1.0 0.0 / -1.0 0.0 / -1.0

bait 0 1.0 / 5.0 0.3 / 1.5 0.4 / 2.0 0.35 / 1.75 0.35 / 1.75 0.3 / 1.5
bait 1 0.3 / 2.75 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
bait 2 0.0 / 0.6 0.0 / 0.4 0.0 / 0.35 0.0 / 0.45 0.0 / 0.2 0.0 / 0.35
bait 3 0.0 / 3.25 0.0 / 2.05 0.0 / 1.6 0.0 / 1.9 0.0 / 1.7 0.0 / 1.95
bait 4 0.0 / 3.4 0.0 / 2.45 0.0 / 2.3 0.0 / 2.3 0.0 / 2.15 0.0 / 1.9

sokoban 0 0.0 / 0.05 0.0 / 0.15 0.0 / 0.05 0.0 / 0.0 0.0 / 0.1 0.0 / 0.0
sokoban 1 0.0 / 0.2 0.0 / 0.45 0.0 / 0.15 0.0 / 0.2 0.0 / 0.3 0.0 / 0.15
sokoban 2 0.0 / 0.85 0.0 / 1.05 0.0 / 1.1 0.0 / 1.0 0.0 / 0.9 0.0 / 1.2
sokoban 3 0.0 / 0.25 0.0 / 0.5 0.0 / 0.5 0.0 / 0.6 0.0 / 0.4 0.0 / 0.2
sokoban 4 0.05 / 1.0 0.05 / 1.0 0.05 / 0.9 0.2 / 1.15 0.2 / 1.15 0.05 / 0.95

boulderdash 0 0.0 / 0.55 0.0 / 0.9 0.0 / 1.05 0.0 / 1.2 0.0 / 0.2 0.0 / -0.1
boulderdash 1 0.0 / 2.3 0.0 / 2.0 0.0 / 3.1 0.0 / 2.4 0.0 / 2.7 0.0 / 2.15
boulderdash 2 0.0 / 3.65 0.0 / 4.2 0.0 / 3.2 0.0 / 3.0 0.0 / 3.65 0.0 / 3.2
boulderdash 3 0.0 / 0.3 0.0 / 0.75 0.0 / 0.15 0.0 / 0.25 0.0 / 1.25 0.0 / 1.25
boulderdash 4 0.0 / 1.9 0.0 / 2.4 0.0 / 2.4 0.0 / 1.3 0.0 / 2.15 0.0 / 2.5

zelda 0 0.05 / -0.15 0.0 / -0.15 0.0 / -0.05 0.0 / 0.0 0.0 / -0.05 0.0 / -0.4
zelda 1 0.0 / -0.05 0.0 / 0.0 0.0 / 0.7 0.0 / -0.1 0.05 / 0.0 0.0 / 0.85
zelda 2 0.0 / -0.15 0.0 / -0.3 0.0 / 0.2 0.0 / -0.2 0.0 / 0.4 0.0 / 0.15
zelda 3 0.0 / -0.3 0.0 / -0.1 0.0 / -0.05 0.0 / -0.1 0.0 / 0.45 0.0 / -0.4
zelda 4 0.0 / 0.0 0.05 / 0.35 0.0 / -0.25 0.0 / 0.45 0.0 / -0.25 0.05 / 0.4

nearly perfect win-rate of the agent among all three games.
Similarly, the proposed agent was able to play the game bait
better than other agents. For level 0, the perfect win-rate can
be explained by the small number of moves required to finish
a level. Since the applied breadth-first search always detects a
valid solution during the first turn, the agent is able to reliably
complete the level. The higher win-rate in these deterministic
games can probably be attributed to the agent’s search process
as well. Due to the deterministic outcome, the agent is able
to expand the search tree with every tick and finally find a
winning action sequence. Nevertheless, this would not have

been possible in case the learned forward model represents the
game’s mechanics poorly. To the best of our knowledge, the
sample implementations of the other search algorithms did not
implement similar optimizations.

In the game’s sokoban and treasurekeeper the agent extracted
a reliable forward model but lacked the ability to model
the games’ termination conditions. Especially in the case of
treasurekeeper the agent has shown to flee from enemies but
failed in blocking the enemy’s path to the treasure chest.
Both games require planning over very long horizons to
win the game, which the agent is not capable of due to the



limited search time. This problem is also reflected in the poor
performance of other search-based agents, which fail to win
the game despite having access to the true forward model.

Similar problems arise in the games golddigger, boulderdash,
and zelda. As long as the the collectibles remain out of the
agent’s reach (in terms of planning horizon), it will move
randomly. This changes abruptly when the agent gets near an
item. Especially in the first level of golddigger, an agent can
follow the line of gold coins and diamonds until all of them
have been collected. Sadly, the learned reward model failed in
predicting the benefit of collecting these items such that our
proposed agent was limited to a random exploration.

VI. CONCLUSION

In this paper, we presented our forward model learning agent
for the 2020 GVGAI competition’s game-learning track. Given
a tile-based state representation the agent has shown to be
able to learn reliable forward models of several deterministic
games using a local forward model learning approach. For
non-deterministic games, the agent was less successful due to
not being able to capture the random movement of enemies
reasonably well.

In the future, we would like to expand on our evaluation
by using the trained forward model on each of the included
search-based algorithms. From this, we expect further insights
into the effects of learning an imperfect approximation to the
true forward model and the performance of the applied search
process. Additionally, we would like to further expand on the
various components introduced throughout this paper.

In Section III-A1 we have introduced a method for merging
similar looking tiles into a semantically equal tile type based
on a minimal correlation of their pixel values. We would
like to further expand on this approach by letting the agent
decide if two visually different tiles should be merged based
on their similar semantics. For this purpose, the agent may
extract all unique tiles and merge two tiles in case the resulting
local forward model achieves a higher prediction accuracy
(or the agent achieves a higher game-playing performance).
Similarly, we would like to improve the efficiency of training
the agent to play non-deterministic games as well as its final
game-playing performance. Furthermore, we would like to
explore new ways in representing the reward model, since the
two-phase approach slows down its evaluation and fails to
express some game-mechanics (e.g. termination conditions of
treasurekeeper).
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