
Predicting Opponent Moves for Improving
Hearthstone AI

Alexander Dockhorn , Max Frick ,

Ünal Akkaya , and Rudolf Kruse

Otto-von-Guericke University,
Institute for Intelligent Cooperating Systems,

Universitaetsplatz 2, 39106 Magdeburg, Germany
{alexander.dockhorn, max.frick, uenal.akkaya, rudolf.kruse}@ovgu.de

Abstract. Games pose many interesting questions for the development of
artificial intelligence agents. Especially popular are methods that guide the
decision-making process of an autonomous agent, which is tasked to play a
certain game. In previous studies, the heuristic search method Monte Carlo
Tree Search (MCTS) was successfully applied to a wide range of games.
Results showed that this method can often reach playing capabilities
on par with humans or even better. However, the characteristics of
collectible card games such as the online game Hearthstone make it
infeasible to apply MCTS directly. Uncertainty in the opponent’s hand
cards, the card draw, and random card effects considerably restrict the
simulation depth of MCTS. We show that knowledge gathered from a
database of human replays help to overcome this problem by predicting
multiple card distributions. Those predictions can be used to increase
the simulation depth of MCTS. For this purpose, we calculate bigram-
rates of frequently co-occurring cards to predict multiple sets of hand
cards for our opponent. Those predictions can be used to create an
ensemble of MCTS agents, which work under the assumption of differing
card distributions and perform simulations according to their assigned
distribution. The proposed ensemble approach outperforms other agents
on the game Hearthstone, including various types of MCTS. Our case
study shows that uncertainty can be handled effectively using predictions
of sufficient accuracy, ultimately, improving the MCTS guided decision-
making process. The resulting decision-making based on such an MCTS
ensemble proved to be less prone to errors by uncertainty and opens up
a new class of MCTS algorithms.

Keywords: Hearthstone, Monte Carlo Tree Search, knowledge-base, en-
semble, uncertainty, bigrams

1 Introduction

Computational intelligence in games is a thriving research topic, with a growing
demand from the video game industry. Especially, applications in video games

https://orcid.org/0000-0001-8711-7428
https://orcid.org/0000-0003-1778-9856
https://orcid.org/0000-0002-1377-7076
https://orcid.org/0000-0003-4981-2758

2 Predicting Opponent Moves for Improving Hearthstone AI

1

2

2

3

4

5

6

7

8

89

Fig. 1: Elements of the Hearthstone game board: (1) weapon slot (2) hero (bottom:
player, top: opponent) (3) opponent’s minions, (4) player’s minions, (5) hero
power, (6) hand cards, (7) mana, (8) decks, (9) history

make it possible to quickly compare agents, and their related methods, by letting
them play against each other. The development of artificial intelligence (AI) agents
for games often involves solving decision-making tasks, for which heuristic search
processes, such as Monte Carlo Tree Search (MCTS) are frequently used [2].

Recent studies showed that the actual skill-level of an MCTS agent is de-
pendent on the quality of performed simulations during the search [7]. This
is especially hard in the context of collectible card games, such as the online
game Hearthstone, where the set of playable card-combinations is extremely
large. Even more critical is the high amount of uncertainty involved in the game.
Game-mechanics such as the random card-draw, the unknown hand cards of
our opponent, as well as random card effects hinder the accuracy of performed
simulations and restrict the simulation depth.

In the context of a 2-player card game, the prediction of our opponent’s
moves, his hand-cards, as well as the cards in his deck largely influence which
moves the player needs to consider. In this work we create a knowledge-base
of frequently played card combinations from a database of human player game
replays. During a game the knowledge-base is used to predict the opponent deck
based on previously played cards. From the estimated deck we sample multiple
hand card sets for our opponent. An ensemble of MCTS procedures is initialized
based on the hand card samples. The ensemble’s best result will be returned as
final outcome of the decision-making process.

The developed agent is exemplary for uncertainty handling in MCTS agents.
The result of the simulation is less prone to wrong assumptions, due to the
included knowledge-base and the search on an ensemble of MCTS procedures
Our results indicate that the prediction-based ensemble improves the playing
capabilities of our developed agent.

Predicting Opponent Moves for Improving Hearthstone AI 3

The remainder of this paper is structured as follows: In Section 2 we review
the game Hearthstone: Heroes of Warcraft and previous research efforts on the
development of Hearthstone AIs. Section 3 covers the Flat Monte Carlo and the
Monte Carlo Tree Search algorithm. Additionally, we shortly review recently
used agents found in the literature in Section 4. In Section 5 we first discuss our
approach to learn frequent card combinations from a large database of replays.
We further introduce our roll-out policy, which includes the prediction of our
opponent’s cards based on our knowledge database. The influence of the new
rollout policy and general parameters of MCTS is tested in Section 6 followed
by a detailed discussion of our results. Finally, in Section 7 we highlight the
implications of our work and summarize our suggestions for further improvements.

2 Hearthstone: Heroes of Warcraft

Hearthstone is a turn-based digital collectible card game developed and published
by Blizzard Entertainment [1]. Players compete in one versus one duels choosing
a self-constructed deck and one out of nine available heroes. In these matches
players try to beat their opponents by reducing the opponent’s health from
30 to 0. This can be achieved by playing cards from the hand onto the game
board at the cost of mana. Played cards can be used to inflict damage to the
enemies hero or to destroy cards on his side of the game board. The amount
of mana available to the player increases every turn (up to a maximum of 10),
which also increases the complexity of later turns. At the beginning of a turn
the player also draws a new card until his deck is empty. If no cards remain
he receives fatigue-damage, which is steadily increasing from turn to turn. The
standard game board is shown in Figure 1.

A deck is a self-constructed set of 30 cards, which can be chosen from more
than 1000 cards currently included in the game. Each card brings unique effects
to influence the current game board. Additionally, heroes can use class-specific
hero-powers and cards.

Cards can be of the type minion, spell, or weapon. Figure 2 shows one example
of each card type. Minion cards assist and fight on behalf of the hero. They
usually have an attack-, health-, and mana cost-value, as well as additional
abilities or a special minion type. Once played, they can attack the enemies side
of the board every consecutive turn to inflict damage on either enemy minions
or the opponent’s hero. Attacking also reduces its own health points by the
attack points of the defender. In case a minion’s health drops to zero or less,
it is removed from the board and put into the player’s graveyard. Spell cards
can be cast using mana to activate various abilities and are discarded after use.
They can have a wide range of effects, such as raising a minion’s attack, inflicting
damage to a hero or minion, etc. Secrets, which are a special kind of spell, can be
played without immediately activating their effect. Given a certain event a secret
will be activated and for example destroy an attacking minion. Once activated,
the secret is removed from the board. Weapon cards are directly attached to the
player’s hero and also enable him to attack. Their durability value limits the

4 Predicting Opponent Moves for Improving Hearthstone AI

1

2 3

4

(a) Minion card

1

4

(b) Spell card

1

2 3

(c) Weapon card

Fig. 2: General card types: cards include (1) mana cost , (2) attack damage,
(3) health/durability, (4) and special effects.

number of attacks till the weapon breaks. Only one weapon can be equipped at
the same time.

Hearthstone decks often contain multiple cards which act in synergy, e.g.
pirate minion cards of the same type buff each other. Generated decks can be
categorized in the three major categories: Aggro, Mid-range, and Control. Aggro
decks build on purely offensive strategies, which often include a lot of minions.
Control decks try to win on the long run by denying the opponent from executing
his strategy and dominating the game situation. Mid-range decks are in-between
Aggro and Control decks. They try to counter early attacks to dominate the
game board with high cost minions during the mid of the game.

Game length and branching factor can be dependent on the decks being
played by both players. The possibility of making multiple moves per turn and
the enormous amount of possible decks make Hearthstone a challenging problem
for AI research.

3 Flat Monte Carlo and Monte Carlo Tree Search
(MCTS)

MCTS is a heuristic search algorithm commonly used in a wide range of computer
game AIs [2]. Its exploration of the game tree consists of four major steps (1)
selecting a node, (2) expanding the node with any legal move, (3) simulating
(random) playouts called rollout, (4) determining the final value of the playout
and propagate it back along the path to the root node. Those four phases are
commonly grouped into tree policy (selection and expansion) and default policy
(simulation and back-propagation). Moves under consideration can be evaluated
by repeatedly simulating games to approximate the players chances of winning
the game after executing this move. This can either be done by counting the

Predicting Opponent Moves for Improving Hearthstone AI 5

number of won simulated games or rating any intermediate simulated game-state
using a scoring function. The number of simulations as well as the quality of the
playout are crucial in determining an accurate estimate of the chances of success.
Finally, the node with the highest success-rate is played.

Using a random selection and expansion as tree policy can lead the agent to
lose a lot of time on the simulation of unpromising nodes. For example if nodes
are known, of which the first wins in 80% of the computed simulations and the
second in only 10 % it would likely be more useful to further analyse the subtree
of the first node. This can increase confidence in the approximated chances of
winning the game after picking the node. Nevertheless, it would be possible that
more simulations on the second node would uncover new and more promising
paths. We might also expand a new node, which was not considered yet, that
would be even better than the previous nodes. Therefore, the UCB formula (see
Equation (1)) [12], which balances exploration and exploitation, can be used
during the selection step.

R(s′)︸ ︷︷ ︸
Exploitation

+ C

√
log2(V (s))

V (s′)︸ ︷︷ ︸
Exploration

(1)

where s′ is a child node of s, R(s′) is the average success after choosing node
s′, and V (s) counts the number of visits of state s during previous episodes.
The constant C balances both parts of the equation. Using the UCB as a tree
policy, the search tree is known to converge to the minimax tree as the number
of simulation grows to infinity [12].

4 Previous work and the Hearthstone AI competition

Hearthstone is closed source. Thanks to the efforts of an active community,
multiple simulators exist as part of the HearthSim project [10].

This work uses a simulator called Sabberstone [5], which tries to remodel
each part of the game as close as possible. The C#-programming interface allows
researchers to implement algorithms in this rich test environment. Sabberstone
currently implements 98% of cards included in the game. Therefore, to the best
of our knowledge, Sabberstone represents the most complete simulator currently
available. In the future, researchers will be able to directly compare their results
in the Hearthstone AI competition [8].

Metastone is another simulator, which was frequently used for research projects
in the past [6]. It already includes a greedy optimization agent, which uses a
scoring function to choose the best sequence of moves for the current turn.
The scoring heuristic takes each player’s minions, their number of hand cards,
and current health points into account. Each minion receives a score, which is
determined by weighting the minion’s attack and health values, as well as taking
typical abilities, such as taunt, into account. The proposed scoring function results
in an aggressive play-style, which heavily relies on reducing the opponent’s health,

6 Predicting Opponent Moves for Improving Hearthstone AI

as well as achieving minion dominance on the game board. Other heuristics were
developed for the AAIA17 Data Mining Challenge [11], which inspired multiple
research papers on the development of winner-prediction models. Very good
results were achieved by Neural Network based methods, which achieved about
80% prediction accuracy of mid-game game-states. Therefore, more enhanced
search heuristics than the one provided by Metastone are possible [9].

Metastone also includes an implementation of a Flat Monte Carlo agent,
which we use in our evaluation. Based on Metastone, two MCTS agents were
developed [13,14], which both performed well against the random and Flat Monte
Carlo agent. However, no comparable data is available.

Another well-received work was done on next card prediction [3]. A bag-of-
words of card-co-occurrence bi-grams was used for training a prediction system
for the next upcoming card. Prediction rates of up to 95% were recorded during
the evaluation. The high prediction accuracies inspired our work on enhancements
for MCTS.

5 Enhancing MCTS by the Prediction of
Opponent Hand Cards

Hearthstone players deduce the best move under the effect of multiple sources
of uncertainty. Throughout the game the current game-state cannot be fully
accessed by the player. During the player’s move it is unknown which card will
be drawn next, which cards our opponent currently holds in his hand, and which
cards are contained in the opponent’s deck. Even if the game-state would be fully
accessible, players need to anticipate their opponent s next move(s) for laying
out their own strategy. Nevertheless, players can elicit different levels of skill,
which is suggesting that those tasks can at least be partially handled.

Applying MCTS will have to face the same sources of uncertainty. In this work
we predict our opponent’s move from a database of frequently co-occurring cards.
Predicting our opponent’s move increases the accuracy of performed simulations
and let us reduce the number of necessary simulations without loss of quality
[7]. Ultimately, this increases the skill level of the MCTS agent with only limited
overhead during the simulation.

5.1 Bigram Extraction

Building up a knowledge-base of card-co-occurrences was done by analysing a
total of 544.628 replays by human players. The data set was obtained from an
openly available database of replays [4]. On this website players are able to upload
replays of past games for statistical tracking. Our knowledge-base is based on
replays from June 2016 to October 2017. Each replay consists of the players
deck as well as a history of moves for the recorded game. Additionally, decks
in the replay file are classified in deck categories such as “pirate warrior” or
“token paladin”, each consisting of cards which exploit certain card synergies.
The amount of games per hero class are summarized in Table 1.

Predicting Opponent Moves for Improving Hearthstone AI 7

For each card we determined the number of co-occurrences with other cards.
Three types of co-occurrences were differentiated

– isolated: cards need to be played at the same turn
– successive: cards need to be played in successive turns
– combined: isolated and successive counts are added

We further studied the influence of taking the games result into account on
the final system skill level. For this purpose we either counted only co-occurrences
for moves of the winning player, the losing player, or both. The co-occurrence
database was stored as compressed .json-file and can be accessed during the
simulation phase for to determine likely cards for the next turn.

Table 1: Game statistics

Hero avg. length avg. actions #games

Hunter 393.213 12.927 42.740
Druid 433.383 15.889 72.867
Warrior 428.505 14.757 77.526
Priest 525.571 17.156 53.133
Mage 506.471 18.920 63.887
Shaman 443.933 14.706 76.092
Paladin 459.677 14.561 56.395
Rogue 436.423 17.103 58.541
Warlock 449.750 15.681 43.447

All 452.932 15.786 544.628

5.2 MCTS Enhancement

In this work we extend MCTS for creating an agent for Hearthstone. In our
adaptations of MCTS we aim for widening the prediction to the next 3 turns
determined by consecutive MCTS searches. Extending the simulation can only
be allowed by the knowledge-base. The full algorithm is described below. For
an easier understanding we recommend comparing the described process with
Figure 3.

Phase 1: During our MCTS simulation we use the current state of the game
board as the initial root node. Each action, such as playing a card, attack with a
minion, etc., advances the state of the game and represents another node. The
next node is selected based on UCT selection using the Metastone score and the
visit count of the node (see Equation (1)). Each transition consists of exactly
one move. A player’s turn is made of multiple moves and ends with an end-turn
move.

8 Predicting Opponent Moves for Improving Hearthstone AI

run MCTS to
determine best move

sequence

Get current
game board

backpropagate final
game board score on
all paths, return best

move sequence

play best
move sequence

Phase 1:
determine n best
move sequences

using MCTS

Phase 2:
determine best
Opponent move

on predicted
hand-cards and

game-states

predict opponent s
deck and hand cards

Phase 3: for the
best in each of

the n simulations,
simulate player
turn using MCTS

End-Turn Best End-Turn game state

Path 1 Path 2 Path 3

Fig. 3: MCTS with prediction

A simulation uses a greedy selection of moves
based on the Metastone scoring function. The
last move of a simulation consists of an end-turn
move. The final score after ending the player’s
turn is back-propagated along the simulation
path.

Phase 2: After a number of simulations we pick
the best n nodes and use the game-state of their
best leaf node (end-turn node) for further simula-
tions of the opponent player in phase 2. Based on
his previously played cards we determine a likely
deck (out of 20 pre-implemented samples). A set
of hand-cards is determined using the bi-gram
database. For this we use all previously played
cards to determine their most probable follow-
up card. Out of all follow-up cards we randomly
sample the opponent’s hand cards to approxi-
mate the real set of hand-cards. Using MCTS we
determine the best sequence our opponent can
play all resulting in a end-turn move and a final
game-board.

Phase 3: In phase 3, we determine the best follow-
up turn for each of the returned game-states
to rate the resulting game-board. Once more,
this is done using MCTS. The scores are back-
propagated all the way to our node-rating in
Phase 1. Finally, the best rated node will be
picked for execution.

Even if this process turns out to be computationally expensive, the thorough
simulation of our opponent assures a high quality prediction during phase 2.
Deeper simulations can be created by stacking phase 2 and 3 multiple times,
before back-propagating the final game-board scores. Nevertheless, we chose
a depth of 3, because of the limited prediction accuracy for follow-up turns.
Simulating deeper playthroughs would accumulate more uncertainty, due to
unknown card-draws on both sides. It turned out to be more effective to increase
the number of simulations for a better approximation of the game-state score
after a few moves. The number of simulations can be adjusted to fit the 75
seconds time limit of the game.

Predicting Opponent Moves for Improving Hearthstone AI 9

6 Evaluation

6.1 Experimental Setup

During our evaluation we tested the proposed agent against multiple other agents
mentioned in the literature or in previous implementations. We included a random
agent (random) as general baseline without any planning capabilities. Flat Monte
Carlo (flatMC) was implemented as a basic search strategy. MCTS without
further prediction of the opponent’s hand cards (plainMCTS) was implemented
to test the influence of our bigram prediction. Full observation MCTS (foMCTS)
was used to compare our AI versus an optimal prediction of opponent’s hand
cards. Here, we simulate the optimal prediction by providing the AI with the
actual hand cards during the current game-state. Finally, an exhaustive search
(exh. s.), which is implemented by the Sabberstone framework, allowed us to
choose the best of all possible move sequences for the players turn. However, the
method is not allowed to simulate the opponent’s turn.

Our proposed MCTS algorithm with prediction of our opponent’s hand cards
(predMCTS) was tested against each of the described agents. Therefore, we used
three by Sabberstone pre-implemented decks for representing the possible deck
types and play-styles in Hearthstone. The “Aggro Pirate Warrior” deck (Aggro)
consists of low cost pirate minions, offensive weapons, and spell cards of the
warrior class. In contrast, the “Mid-Range Jade Shaman” deck (Mid-Range) is
made of multiply minion buffs and damaging spells. The third deck-type (Control)
is represented by the “Reno Kazaku’s Mage” deck, which is mainly based on
spell damage, and destroying or taking over control of enemy minions.

For each combination of player deck, opponent deck, and opponent agent we
simulated at least 100 games. The multiple random factors of hearthstone lead
us to simulate more games for the comparison of predMCTS versus plainMCTS
and foMCTS to get stable results. Winning percentages for each match-up are
summarized in Table 2.

6.2 Discussion

Reviewing the results in Table 2 indicates the advantages of the implemented
AI approach. Looking at all the match-ups in which both agents play the same
deck, it becomes clear that our proposed agent is able to beat them in all cases
except one. In general the agent performs best when playing the Mid-Range deck.
Playing the Aggro deck also leads to very good results. The results of the Control
deck against other decks are worse than the results of both other decks, which
might be due to the deck being generally worse than the other two variants.

Both random and flat Monte Carlo consistently lose in most match-ups, while
the remaining opponents are able to win games more often. It is not surprising
that nearly all games (≈ 98%) are won against the random player. Games against
the flat Monte Carlo agent show a promising success rate of ≈ 81% on average.

The plainMCTS agent was beaten in most games while playing the Mid-Range
or the Aggro deck. However, our AI performs worse in the match-ups where

10 Predicting Opponent Moves for Improving Hearthstone AI

Table 2: Winning chances of predMCTS using various decks against other agents.
100 games were simulated against the Random, flatMC, and exhaustive search
agent. Up to 500 games were simulated against predMCTS and foMCTS, because
bigger variances were observed during the simulation process. Columns in which
both agents play the same deck are highlighted in gray.

Wins in % Aggro Mid Control

Random 95 100 100
flatMC 81 73 94
plainMCTS 59 47 58
foMCTS 46 36 60
exh.s. 65 47 70

(a) predMCTS Aggro Deck

Wins in % Aggro Mid Control

Random 99 98 100
flatMC 88 85 99
plainMCTS 71 55 76
foMCTS 59 50 76
exh.s. 62 70 85

(b) predMCTS Mid-Range Deck

Wins in % Aggro Mid Control

Random 97 97 100
flatMC 73 54 89
plainMCTS 36 31 68
foMCTS 41 16 51
exh.s. 45 20 61

(c) predMCTS Control Deck

it uses the Control deck against other deck types. Nevertheless, we achieved a
win-rate of 68% in cases where both agents play the control deck. The overall
win-rate is ≈ 56%. This result and the better performance in the other match-ups
where both agents play the same deck shows that the improved prediction of the
opponent move results in a better overall performance.

The only agent that has beaten our proposed approach in more than 50%
of simulated games is the foMCTS agent. Our overall win-rate is ≈ 48%. This
is not surprising due to the fact, that the foMCTS receives full information of
the players hand cards. Therefore, our results indicate that precise knowledge
can increase the performance of the MCTS algorithm by a large degree. For this
reason, we are motivated to even further increase the performance of our card
prediction algorithm. The advantage of knowing the true hand cards is a bit
unfair and impractical in a legal game situation.

Our proposed approach was able to beat exhaustive search in 6 out of 9
match-ups. The overall win-rate is ≈ 58%.

Generally, the player playing the control deck performs worse in most match-
ups. This could be due to two possible reasons. First, short-term prediction is not
suitable for playing a control deck, because the used deck is in need of long-term
planning. Therefore, the implemented approaches may not perform very well.
A planning horizon of more than three turns may increase the play-strength

Predicting Opponent Moves for Improving Hearthstone AI 11

on this deck-type. Another reason may be Metastone’s scoring function, which
puts more weight on the current game-board, than on the remaining utility of
the hand cards effects. Playing a spell that kills all the opponent’s minions can
be played for immediate effect or kept for a later situation. For example killing
just one minion would be a waste, if another card could yield the same effect.
Either improving Metastone’s scoring function or implementing a deck dependent
scoring function may increase the play-strength for this deck.

7 Conclusions and Future Works

In this work we proposed a method for handling uncertainty in MCTS. Our
method involves the creation of a knowledge-base, which is used to initialize
an ensemble of MCTS procedures. Our current sampling approach is based on
bi-grams, but can theoretically be exchanged by any probabilistic or heuristic
sampling. The resulting decision-making based on such an ensemble proofed to
be less prone to uncertainty at the cost of a marginally increased computation
time. Our sampling based ensemble opens up a new class of MCTS algorithms,
which in its current version already outperforms other agents based on MCTS.

We evaluated our approach based on the collectible online card game Hearth-
stone. Bigrams, which are fast to process and cheap in memory consumption,
are learned from a database game replays. The simulation phase is guided by
sampling multiple hand card sets for the opponent player based on the gathered
knowledge-base. Due to this sampling multiple game situations are considered
during the decision-making phase. This enables our agent to choose better moves
than comparable agents depending on the current state of the game. The proposed
agent was able to consistently beat those agents in multiple game setups.

Our tests using an MCTS agent with full information on the current game-
state show that a perfect prediction would yield slightly better results in some
match-ups, suggesting that improving the prediction accuracy would even further
increase the play-strength. In the future we plan to further analyse the capabilities
of partially informed MCTS agent ensembles.

In the context of creating a Hearthstone AI, we plan to further extend the
opponent card and deck prediction. For this purpose, we would like to incorporate
other sources of knowledge, such as a deck database of current meta-decks. Further
adaptations need to be made for detecting commonly played decks and inferring
the opponent’s strategy. In this work we limited our deck database to 20 commonly
played decks and the deck strategies Aggro, Mid-Range, and Control. This can
be further extended by focusing on deck dependent core-mechanics, such as
strong board clears, discarding cards, or buffing minions. Detecting which core-
mechanic the deck relies on would further improve the opponent prediction. Also,
updates of cards or additions of new cards can drastically change the meta-game.
Hence, gathered knowledge needs to be frequently revised to stay up to date
with currently played strategies. Further work will be put into better scoring
functions, which are based on those core-mechanics.

12 Predicting Opponent Moves for Improving Hearthstone AI

References

1. ”Blizzard Entertainment”: Hearthstone webpage, https://playhearthstone.com/
en-gb/0, accessed on 06.03.2017

2. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A Survey of Monte Carlo
Tree Search Methods. IEEE Transactions on Computational Intelligence and AI in
Games 4(1), 1–43 (mar 2012), https://doi.org/10.1109/TCIAIG.2012.2186810

3. Bursztein, E.: I am a legend: Hacking hearthstone using statistical learning methods.
In: 2016 IEEE Conference on Computational Intelligence and Games (CIG). pp.
1–8. IEEE (sep 2016), https://doi.org/10.1109/CIG.2016.7860416

4. ”Collect-o-Bot”: Hearthstone replay database, http://www.hearthscry.com/
CollectOBot, accessed on 06.03.2017

5. ”darkfriend77”: Sabberstone github repository, https://github.com/HearthSim/
SabberStone, accessed on 06.03.2018

6. ”demilich1”: Metastone github repository, https://github.com/demilich1/
metastone, accessed on 06.03.2017

7. Dockhorn, A., Doell, C., Hewelt, M., Kruse, R.: A decision heuristic for Monte
Carlo tree search doppelkopf agents. In: 2017 IEEE Symposium Series on Compu-
tational Intelligence (SSCI). pp. 1–8. IEEE (nov 2017), https://doi.org/10.1109/
SSCI.2017.8285181

8. Dockhorn, A., Mostaghim, S.: ”Hearthstone AI Competition”, http://

www.is.ovgu.de/Research/HearthstoneAI.html, accessed on 06.03.2018
9. Grad, L.: Helping AI to Play Hearthstone using Neural Networks. In: Ganzha, M.,

Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the 2017 Federated Conference
on Computer Science and Information Systems. vol. 11, pp. 131–134 (sep 2017),
https://doi.org/10.15439/2017F561

10. HearthSim Project: Hearthsim webpage hearthstone simulation & ai, https:

//hearthsim.info/, accessed on 06.03.2017
11. Janusz, A., wiechowski, M., Zieniewicz, D., Stencel, K., Puczniewski, J., Madziuk,

J., lzak, D.: Aaia’17 data mining challenge: Helping ai to play hearthstone, https:
//knowledgepit.fedcsis.org/contest/view.php?id=120, accessed on 06.03.2017

12. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML’06 Proceedings of the 17th European
conference on Machine Learning, Lecture Notes in Computer Science, vol. 4212, pp.
282–293. Springer Berlin Heidelberg, Berlin, Heidelberg (2006), https://doi.org/
10.1007/11871842 29

13. Santos, A., Santos, P.A., Melo, F.S.: Monte Carlo tree search experiments in
hearthstone. In: 2017 IEEE Conference on Computational Intelligence and Games
(CIG). pp. 272–279. IEEE (2017), https://doi.org/10.1109/CIG.2017.8080446

14. Tzourmpakis, G.: Hearthagent, a hearthstone agent, based on the metastone
project, http://www.intelligence.tuc.gr/~robots/ARCHIVE/2015w/Projects/
LAB51326833/, accessed on 06.03.2017

https://playhearthstone.com/en-gb/0
https://playhearthstone.com/en-gb/0
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/CIG.2016.7860416
http://www.hearthscry.com/CollectOBot
http://www.hearthscry.com/CollectOBot
https://github.com/HearthSim/SabberStone
https://github.com/HearthSim/SabberStone
https://github.com/demilich1/metastone
https://github.com/demilich1/metastone
https://doi.org/10.1109/SSCI.2017.8285181
https://doi.org/10.1109/SSCI.2017.8285181
http://www.is.ovgu.de/Research/HearthstoneAI.html
http://www.is.ovgu.de/Research/HearthstoneAI.html
https://doi.org/10.15439/2017F561
https://hearthsim.info/
https://hearthsim.info/
https://knowledgepit.fedcsis.org/contest/view.php?id=120
https://knowledgepit.fedcsis.org/contest/view.php?id=120
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1109/CIG.2017.8080446
http://www.intelligence.tuc.gr/~robots/ARCHIVE/2015w/Projects/LAB51326833/
http://www.intelligence.tuc.gr/~robots/ARCHIVE/2015w/Projects/LAB51326833/

	
	Introduction
	Hearthstone: Heroes of Warcraft
	Flat Monte Carlo and Monte Carlo Tree Search (MCTS)
	Previous work and the Hearthstone AI competition
	Enhancing MCTS by the Prediction of Opponent Hand Cards
	Bigram Extraction
	MCTS Enhancement

	Evaluation
	Experimental Setup
	Discussion

	Conclusions and Future Works

