
Lossless Compression at Zero Delay of the
Electrical Stimulation Patterns of Cochlear Implants

for Wireless Streaming of Audio Using Artificial
Neural Networks

Reemt Hinrichs
Institut für Informationsverarbeitung

L3S Research Center
Leibniz University Hannover

Hannover, Germany
hinrichs@tnt.uni-hannover.de

Lukas Ehmann
Institut für Informationsverarbeitung

Leibniz University Hannover
Hannover, Germany

Hendrik Heise
Institut für Informationsverarbeitung

Leibniz University Hannover
Hannover, Germany

Jörn Ostermann
Institut für Informationsverarbeitung

Leibniz University Hannover
Hannover, Germany

Abstract—Cochlear implants (CIs) are battery-powered, sur-
gically implanted hearing-aids capable of restoring a sense of
hearing in people suffering from moderate to profound hearing
loss. To achieve this, audio signals captured by the microphone
of the CI are processed by its signal processor and converted
into electrical pulses, the stimulation patterns, which then excite
certain areas of the cochlear. Nowadays wireless transmission
of audio from external devices, like remote microphones and
smartphones, is used to improve speech understanding and
localization or for the convenience of the CI user. To conserve
energy or channel capacity in this wireless transmission, data
compression is commonly applied. In this work, zero delay
lossless compression of the so called clinical units of the CIs
is proposed and a zero delay lossless codec (ZDLLC) based
on artificial neural networks is investigated for this purpose.
The ZDLLC is compared to the lossless compression algorithms
PAQ and PPM as well as the lossy Opus audio codec. On the
TIMIT speech corpus and various acoustic scenarios the ZDLLC
achieved a mean bitrate of 28.6 kbit/s at zero algorithmic latency
compared to 33.6 kbit/s to 35.2 kbit/s for the Opus audio codec
at 5 ms to 7.5 ms algorithmic latency. In contrast, at very
high latency, PPM achieved a mean bitrate of 37.3 kbit/s and
PAQ achieved a mean bitrate of 25.1 kbit/s. It was found that
lossless compression of the stimulation patterns could be useful
for wireless streaming of audio.

keywords—lossless compression, cochlear implants, neural net-
works

I. INTRODUCTION

Cochlear implants (CIs) are battery-powered, surgically
implanted hearing-aids capable of restoring a sense of hear-
ing in people suffering from moderate to profound hearing
loss. While good speech understanding is achieved in high
speech-to-background noise environments, more challenging
environments as encountered in common social situations like

a restaurant setting still pose a problem [1]. Wireless streaming
of audio can be used to improve speech understanding of CI
users in these situations. Methods like wireless streaming of
audio from smartphones, remote microphones [1], contralat-
eral routing of signals or binaural sound coding strategies
[2] require transmission of audio from external devices to
a CI processor. To either save power or bandwidth in this
wireless transmission, signal compression or coding is com-
monly applied to reduce the bitrate of the audio signal before
transmission. This coding usually introduces an additional
delay in the processing chain and thus has to be kept as small
as possible, as hearing aid users cannot tolerate delays above
the range of 5−10 ms without affecting their speech perception
[3]. The selection of source coding algorithms is severly
limited due to this delay constraint. In CIs, an audio input is
mapped to the electrical domain by the sound coding strategy
of the signal processor. In this processing some irrelevant
information is removed, and thus compression in the electrical
domain allows to reduce bitrate. Previously, we proposed
[4], [5] the Electrocodec to code and transmit the electrical
stimulation patterns generated by the sound coding strategy of
the CI. We proposed [4] a combination of differential pulse-
code modulation (DPCM) and arithmetic coding to compress
the current magnitudes and the band selection of the electrical
stimulation patterns generated by the advanced combinational
encoder (ACE) sound coding strategy. Using this approach, we
achieved [5] lower bitrates and zero latency at equal or better
speech understanding than the state-of-the-art Opus audio
codec. However, in [4], [5] we coded the output of the so called
loudness growth function (LGF), the logarithmic function that
is used in CIs to map from the acoustic to the electrical



TABLE I
SPEECH AND NOISE AZIMUTHS, SIGNAL-TO-NOISE RATIOS (SNRS), NOISE

TYPES AND ACOUSTIC SCENARIOS CONSIDERED IN THIS WORK. A:B:C
DENOTES THE SET {A,A + B,A + 2B, . . . , C}. BFR IS RESTAURANT

NOISE, CCITT IS SPEECH-SHAPED NOISE.

Label Speech Azi. [◦] Noise Azi. [◦] SNR [dB] Noise Scenario
Train -90:15:90 -90:15:90 -5:5:20 30 50 BFR, Bus, CCITT, Office Anechoic, Office
Test -90:5:90 -90:5:90 -2.5:2.5:10 20 40 BFR, Bus, CCITT, Office Anechoic, Office, Cafeteria

domain. But, another processing step is performed to compute
the actual currents applied to the electrodes of the CIs. This
step covers the mapping to the so called current levels, usually
measured in clinical units, integers which correspond one to
one to current values in microampere. The precise mapping
from the output of the LGF to clinical units is set individually
for each CI user by an audiologist and involves setting the
dynamic range in the electrical domain for each subband of
the CI. These clinical levels apriori contain only the relevant
information for the CI user. While the advantage of coding the
output of the LGF as done in [4], [5] is some independence
of the individual parameters of the CI user, the downside are
some irrelevancies still left in the LGF data. Thus, compression
of the clinical units could be useful for wireless transmission
of audio for CIs. Therefore, in this work, lossless compression
of the current levels at zero latency is investigated. The general
application in wireless streaming of audio for CIs is depicted
in Fig. 1. Conventionally, an audio codec compresses the
audio signal of an external device and transmits it to the
CI processor, where it is decompressed and processed by the
sound coding strategy. In our approach, the audio signal is first
converted into stimulation patterns, which are then compressed
by our codec and transmitted to the CI processor. While lossy
compression allows for lower bitrates, it can generally lead to
undesired distortions of a signal or certain signals.

Lossless compression does not distort a signal and thus
guarantees unaffected audio quality and intelligibility. Addi-
tionally, CI users could be very sensitive to distortions of the
clinical units requiring extensive listening tests to develope
a lossy codec based on the clinical units. For this purpose,
a simple lossless codec is investigated which mixes several
contexts using a feedforward network. The codec is compared
on the TIMIT speech corpus using several acoustic scenarios
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Fig. 1. Two methods to wireless transmission of audio for cochlear implants
(CIs). Conventionally, the audio signal would be encoded by an audio codec,
transmitted to the signal processor of the CIs where the audio is decoded by
the same audio codec. In the investigated approach, the audio signal is first
processed by the sound coding strategy of the CI, in our case the advanced
combinational encoder (ACE), and then compressed and decompressed before
and after transmission by a lossless codec. Due to that, the current levels,
specified in clinical units (CU), are reconstructed without distortion on the
receiver side, unlike for the (usually lossy) audio codec.

to the well known lossless algorithms PAQ and prediction
by partial matching (PPM) as well as the lossy state-of-the-
art audio codec Opus. Our Electrocodec is included as a
baseline as well. Section II elaborates on the required details
of the sound coding strategy used to generate the data as well
as the dataset and baselines used. Additionally, the lossless
codec investigated in this work is explained. In Section III,
the performance of the lossless codec is investigated and
compared to baseline compression algorithms. In Section IV,
the results are discussed and compared to previous works and
the manuscript concludes in Section V.

II. METHODS AND MATERIALS

A. Advanced Combinational Encoder

The sound coding strategy used in this work is the advanced
combinational encoder (ACE). ACE belongs to the class of so
called N of M sound coding strategies, where at discrete time
n only a subset of N electrodes or subbands out of the total
M electrodes of the CI are selected. The main components of
ACE are a filter bank, which splits the input audio waveform
into M subbands, an envelope detection block, subsequent
frequency subband selection and an acoustic to current level
mapping block consisting of the loudness growth function
(LGF) and the actual current mapping. In ACE, the subband
selection is performed on the basis of the largest magnitudes,
i.e. the N subbands with the largest magnitudes are selected
and processed further and the other M −N subbands produce
no output. For a detailed description refer to Nogueira et al.
[6]. The mapping block determines the current level from
the envelope magnitude and the band characteristics. This
is done using the logarithmically-shaped LGF that maps the
acoustic envelope amplitude a(k) of subband k to an electrical
magnitude P (k) according to

P(k) =


log(1 + ρ((a(k)− s)/(m− s)))

log(1 + ρ)
, s ≤ a(k) ≤ m

1, a(k) ≥ m
no output, a(k) < s

. (1)

The magnitude P (k) is a fraction in the range from 0 to
1 that represents the proportion of the output current range
(from the threshold level to the comfort level). An input at
base-level s is mapped to an output at threshold level (THR),
and no output is produced for an input of lower amplitude. The
parameter m is the input level at which the output saturates.
Inputs at this level or above result in stimuli at comfort level
(MCL). The parameter ρ controls the amount of compression
of the LGF [6]. For all experiments the default settings were
used. These set ρ = 416.2063, s = 4/256 and m = 150/256.
The channel stimulation rate, which is the number of pulses
in each band per second, was fixed at 900 pulses per second
(pps), while the number of selected subbands was fixed at
N = 8 and the number of total subbands was fixed at M =
22. Finally, the clinical units CU(k) delivered by the CI are
derived from P (k) by

CU(k) = THR(k) + [(MCL(k)− THR(k)) · P (k)], (2)
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Fig. 2. General structure of the lossless codec. From an audio input the
electrical stimulation patterns are generated by the advanced combinational
encoder sound coding strategy. A feedforward neural network mixes the
estimated probabilities of several contexts to compute (hopefully) improved
symbol probabilities which are then used for the encoding of each subband
symbol by the arithmetic encoder. The decoder uses the same structure.

where THR(k) and MCL(k) are the threshold level and
the most comfortable level, respectively, of subband k. The [·]
operator represents the rounding operation and rounds towards
the nearest integer. The dynamic range of subband k is defined
as MCL(k)− THR(k). If a band is not selected or a(k) < s,
then CU(k) is assigned the value zero. Else it is in the
range CU(k) ∈ {THR(k), THR(k)+1, . . . ,MCL(k)}. The
quantity CU(k) is mapped to a current value in microamperes
by an exponential function which is then the actual current
applied to the electrodes. In this work, it is proposed to
compress CU(k) losslessly. The dynamic range, which also
depends on the respective subband, often lies between 5 bits
to 7 bits [7] at least for devices by Cochlear Ltd. For the
subjects of our study [5] the range of CU(k) was mostly
within the range of 5 bits to 6 bits. In general, there is a larger
gap between the dynamic ranges of prelingually implanted CI
users and postlingually implanted CI users. The latter exhibit
a considerably smaller dynamic ranges [8]. This small range
makes lossless compression attractive, which guarantees no
loss of information.

B. Datasets

To create realistic noisy speech signals, the TIMIT speech
corpus was processed by the behind-the-ear head related
transfer functions (HRTF) from [9]. These HRTFs allow to
simulate speech in noise scenarios, where the azimuth of
each source can be independently varied with respect to
its incident azimuth in the range of ±90◦ in steps of 5◦

except for certain acoustic environments. An azimuth of −90◦
corresponds to a source located to the left of the listener
and +90◦ corresponds to a source located to the right of
the listener, 0◦ corresponding to the front of the listener.
Each speech recording of the training and test data of TIMIT
was processed using signal-to-noise ratios (SNRs), speech and
noise azimuths, acoustic environments and noise type from
a list of values given in Tab. I. For each category (SNR,
noise type, . . . ) and each speech file, values were selected

Fig. 3. Heatmap showing the partial correlation for the sixth subband. The
most relevant contexts for prediction are the same subband at the previous
time step and the previous subband at the same time step. The notation [∆k,
∆n] is channel independent, e.g. assuming the subband k at frame n is to be
encoded then [-1,-2] is the context corresponding to the subband k − 1 and
timestep n− 2.

and applied randomly. While combinations of conditions like
bus noise in a cafeteria environment are certainly less realistic
than others, these still give important information about the
robustness and generalization capabilities of the lossless codec.
The range of values for the SNR and other categories for the
test set was chosen such that it allowed to assess the impact of
out-of-group values, e.g. the impact of a speech azimuth not
used in training like 5◦. As noise, we used Comité Consultatif
International Téléphonique et Télégraphique (CCITT) noise,
bus noise, office noise and restaurant noise. CCITT noise is
speech-shaped noise often used in clinical research. The test
data was mapped to clinical units using Eq. 2 with dynamic
ranges of size 2B − 1 for all subbands, where B = 3, . . . , 6
was investigated. Because subbands not selected are assigned
the value zero, which is not included in the values according
to Eq. 2, another symbol had to be the zero, and together
in total 2B symbols were used per subband. Additionally, to
assess the compression using real dynamic ranges, the data was
mapped to clinical units using mean dynamic ranges from CI
users. For this purpose, values given in [8] for prelingually
and postlingually implanted CI users were considered, which
should yield a meaningful statistic.

C. Lossless Codec

The block diagram of the investigated zero delay lossless
codec (ZDLLC) including ACE is depicted in Fig. 2. The
general structure is heavily inspired by PAQ [10]. The purpose
of the contexts is to estimate symbol probabilities through
relative frequencies, i.e. each context estimates a conditional
probability P (CUn(k)|CUni1

(ki1), . . . , CUniN
(kiN )), where

N is the length or order of the context. nis and kis were such
that only already encoded subbands were considered at each
time step. Contexts of length one to three were considered. The
purpose of the artificial neural networks is to mix the context
probabilities to obtain a hopefully more accurate symbol
probability, subsequently used in the artihmetic coding for the
compression of the current frame. A frame is understood as
the vector CUn := (CUn(1), CUn(2), . . . , CUn(M))T with
CU(k) as in Eq. 2 and n denoting discrete time. The combina-
tion of a feedforward network and contexts allows to capture
the dynamics of the subband signals while keeping a simple
network structure. This is beneficial as recurrent networks
tend to be more difficult to train. For an optimal algorithm
each subband had its own neural network. Compression was
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Fig. 4. Mean bitrate across signal-to-noise ratio (SNR) of the lossless codec
on the test set. A considerable increase in bitrate with decreasing SNR was
observed. The cause are more subbands that are selected at low SNRs. The
dashed lines indicate the mean bitrate across the test set. These results were
obtained using the complete set of contexts given in Table II.

performed from top to bottom, i.e. starting with CUn(1). The
codec made use of the N of M selection of ACE to optimize
the compression. At time step n, once N selected subbands
have been encoded the encoding process can stop as the other
subbands cannot be selected which considerably reduces the
required bitrate. As only one frame of data is compressed at a
time, the algorithmic latency of the lossless codec is zero.
To find an initial set of useful contexts, i.e. contexts that
carry most information about the future course of the clinical
units, the partial correlation coefficients were computed and
the subbands with the largest partial correlation coefficient
were initially considered for the compression algorithm. The
computed partial correlation coefficients are depicted in Fig. 3.
Training of the network was performed for 500 epochs using
the cross-entropy loss and a batch size of 256. Early stopping
based on the training loss was applied and the training was
stopped if the loss decreased by less than 1% over the course
of ten epochs.

D. Baselines

The well known lossless source coding algorithms predic-
tion by partial matching (PPM) and PAQ [10] were used as
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Fig. 5. Bitrate across the number of considered contexts per subband of the
lossless codec. The single context was [0, -1], i.e. the same subband but the
previous time step, and served as reference to assess the benefit of context
mixing. Invalid contexts like [-1,0] in the first subband were ignored.

baseline. For their application, the vector CU(n) was binarized
for each n and the resulting binary vectors concatenated.
This sequence of binary vectors was then compressed. While
PAQ and PPM do not make a fair comparison due to their
algorithmic latency - they compress the entire bitstream at
once - they provide a useful estimate of the upper bound
for the achievable compression. For both algorithms, bitrates
are given, computed using the compressed size and the total
duration of the stimulation patterns, instead of compression
ratios, as bitrate is the more common measure for source
coding algorithms related to data transmission. Additionally,
the Opus audio codec [11] served as baseline to assess the
bitrates achieved by a state-of-the-art audio codec. Opus can
code at almost any bitrate between 6 kbit/s and 520 kbit/s
and at algorithmic latencies between 5 ms and 60 ms. For
the comparison between Opus and the lossless codecs, the
audio signals were compressed and decompressed using Opus
as required in a wireless transmission, and the decompressed
signal was processed by ACE. The resulting stimulation
patterns were then resynthesized using a vocoder, and the
resulting audio signal compared to the original audio signal
using the short-time objective intelligibility measure (STOI)
[12], a common algorithm to assess the intelligibility of speech
signals which has found application in CI research [13]. This
process is described in detail in [5]. Using STOI, Opus was
applied at algorithmic latencies of 5 ms and 7.5 ms and several
bitrate settings to find the minimal mean bitrate at which
no reduction in speech intelligibility could be observed. This
process was also guided by the results of [5]. This bitrate
was then used for the comparison for each latency setting.
Finally, to contrast the lossless compression of the stimluation
patterns with lossy compression, the Electrocodec, proposed
by us in [4], [5], was used as reference as well. In contrast
to the investigated ZDLLC, the Electrocodec is a lossy codec
which compresses the quantity P (k), defined in Eq. 1, at zero
delay. It was applied using quantizer resolutions of two and
three bits per subband, accordingly labeled EC2 and EC3.

TABLE II
THE CONTEXTS OF ORDER ONE TO THREE CONSIDERED FOR THE
LOSSLESS COMPRESSION. THE NOTATION [∆k, ∆n] IS CHANNEL

INDEPENDENT, E.G. ASSUMING THE SUBBAND k AT FRAME n IS TO BE
ENCODED, THEN [-1,-2] IS THE CONTEXT CORRESPONDING TO THE

SUBBAND k − 1 AND TIMESTEP n− 2.

Contexts
1st Order [0, -1] [-1, 0] [0, -2] [-2, 0] [1, -1] [-1, -1]
2nd Order [[0, -1], [-1, 0]] [0, -1], [0, -2] [0, -1], [1, -1]

[0, -1], [-1, -1] [-1, 0], [-1, -1] [-1, 0], [-2, 0]
[-1, -1], [-2, 0] [-1, -1], [0, -2] [1, -1], [0, -2]

3rd Order [0, -1], [-1, 0], [-1, -1] [0, -1], [-1, 0], [1, -1]
[0, -1], [-1, 0], [0, -2] [0, -1], [-1, 0], [-2, 0]
[0, -1], [0, -2], [-1, -1] [0, -1], [0, -2], [1, -1]
[0, -1], [-1, -1], [1, -1] [0, -1], [-1, -1], [-2, 0]
[-1, 0], [-1, -1], [-2, 0]

Longterm [-3,0] [0,-3] [0,4] [0,-5] [0,-6] [0,-7]
[0,-8] [0, -6], [0, -7], [0, -8] [0, -2], [0, -3] [0, -3], [0, -4] [0, -4], [0, -5] [0, -5], [0, -6]

[0, -6], [0, -7] [0, -7], [0, -8]
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Fig. 6. Bitrate across number of neurons and layers of the artificial neural
networks. Increasing the number of layers above two did not yield substantial
benefits and the number of layers could be kept at two to reduce the
computational complexity. A resolution of 6 bit/symbol was used to generate
the depicted results.

III. RESULTS

Mean bitrates of the ZDLLC across the test set and SNRs
for 3 bit to 6 bit are depicted in Fig. 4. Starting at about 20
dB the bitrate considerably increased from about 21.6 kbit/s
for 6 bit at 20 dB to about 33.7 kbit/s for 6 bit at -2.5 dB.
Similar but smaller increases occured for lower number of
bits/symbol. The cause is the number of selected bands often
being less than N for SNRs greater than about 7.5 dB, which
makes compression considerable easier. At and below an SNR
of about 5 dB for most frames the maximum number N out
of the M subbands are selected, thus making compression
more difficult. The effectiveness of the contexts is shown
in Fig. 5, where the bitrate is plotted across the number of
contexts considered by the ZDLLC. A single context served
as reference which did not use a neural network. Increasing the
number of contexts from one to two allowed to decrease the
bitrate by about 1.5 kbit/s for the 6 bit test set and 1 kbit/s for
the 4 bit test set. Adding further contexts yielded a decrease
of the bitrate by about 2 kbit/s for the 6 bit and by about 1.3
kbit/s for the 4 bit dataset. The impact of the neural network on
the bitrate is shown in Fig. 6, where the bitrate across number
of layers is depicted for several number of neurons per layer.
A substantial reduction in bitrate by 0.3 kbit/s to 0.6 kbit/s
was observed when two or more layers were used compared
to using only a single hidden layer. Mean bitrates across the
test set using 6 bit data resolution of PPM, PAQ, Opus, the
Electrocodec and the ZDLLC are given in Table V. Both,
PAQ and the ZDLLC, outperformed Opus at either latency
with respect to bitrate. However, the Electrocodec achieved the
smallest bitrate of 20.1 kbit/s when using 2 bit quantization
per subband, rising to only 22.7 kbit/s for an SNR ≤ 5 dB.
PPM achieved considerably worse bitrates more than 10 kbit/s
above those of PAQ and the ZDLLC. PAQ achieved about 2
kbit/s to 3 kbit/s lower bitrate than the ZDLLC, however, at
very high latency. Mean bitrates of the ZDLLC, PPM and
PAQ using dynamic ranges of prelingually and postlingually
implanted CI users taken from [8] across the entire test set
are given in Table III. For postlingually implanted CI users,

TABLE III
MEAN BITRATES IN KBIT/S ON THE TEST SET AND THE SUBSET WITH A
SIGNAL TO NOISE RATIO ≤ 5 DB OF THE INVESTIGATED ZERO DELAY

LOSSLESS CODEC (ZDLLC) AS WELL AS PREDICTION BY PARTIAL
MATCHING (PPM) AND PAQ, USING THE DYNAMIC RANGES OF

PRELINGUAL AND POSTLINGUAL IMPLANTED CI USERS AS LISTED IN
TABLE IV.

Dataset\Condition Prelingual Postlingual
ZDLLC PAQ PPM ZDLLC PAQ PPM

Test Set 27.4 24.9 36.7 24.6 21.9 33.8
Test Set (≤ 5dB) 31.4 30.0 43.5 28.1 26.3 40.0

a substantial decrease in bitrate by about 3 kbit/s compared
to prelingually implanted CI users was observed, which is in
accordance with the results shown in Fig. 4. PAQ and the
investigated ZDLLC both achieve bitrates around or below 30
kbit/s, outperforming Opus at either investigated latency.

IV. DISCUSSION

In this work a zero delay lossless codec (ZDLLC) for the
clinical units of cochlear implants was investigated. It con-
sists of artificial neural networks and several contexts which
estimated conditional symbol probabilities used in arithmetic
coding. The lossless codec achieved similiar or lower bitrates
than the Opus audio codec at zero latency for real dynamic
ranges of CI users compared to 5 ms or more for Opus.
The ZDLLC outperforming PPM and achieving worse but
similiar bitrates/compression ratios as PAQ is comforting. PAQ
outperforming the investigated ZDLLC despite being a general
purpose algorithm is due to several reasons: PAQ compresses
the entire bitstream and thus has a latency as long as the
bitstream. It cannot be used as is for low latency applications.
In contrast, the ZDLLC compresses frame by frame to achieve
zero latency, thereby reducing the number of symbols per
message, and thus its arithmetic coding will lose some of
its effectiveness. This alone can explain a redundancy in our
approach of up to 2 bit/frame, i.e. a redundancy of 1.8 kbit/s.
However, this still would not entirely account for the gap in
bitrate between PAQ and the ZDLLC. Secondly, PAQ adapts
the mixing of its contexts on the fly, allowing to adapt better
to changes in signal statistics unlike our ZDLLC which uses a
static feed-forward network. Finally, PAQ uses many different
kind of contexts which might allow to adapt to almost any kind
of data despite its general purpose nature. The performance of
the ZDLLC, which by no means used an optimal implementa-
tion, could be improved further, e.g. by increasing the size of
the buffer used for the estimation of the symbol probabilities.
Our Electrocodec outperforming all other codecs supports its
design further and was expected due to its lossy coding of the
stimulation patterns. While lossy compression of the output
of the loudness growth function as done by the Electrocodec
is beneficial for some applications, lossless compression of
the clinical units could be advantagous for wireless streaming
of audio to guarantee no loss of information, which cannot
be guaranteed for all kind of signals by the Electrocodec. An
interesting result is the achievable bitrate when using only a



TABLE IV
MEAN DYNAMIC RANGES OF EACH CHANNEL OR SUBBAND FOR PRELIGUNAL AND POSTLINGUAL IMPLANTED CI USERS TAKEN FROM [8].THE AVERAGE

(AVG) OF THE DYNAMIC RANGES OF THE SUBBANDS IS GIVEN AS WELL.

Subject\Subband 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 AVG
Prelingual 56 58 57 58 57 57 57 57 57 58 58 57 55 56 57 59 58 58 58 58 59 59 58
Postlingual 38 38 39 40 39 40 41 40 41 40 40 40 39 38 38 37 36 35 34 32 30 29 37

TABLE V
MEAN BITRATES OF THE INVESTIGATED ZERO DELAY LOSSLESS CODEC

(ZDLLC) AND THE BASELINE ALGORITHMS PAQ, PREDICTION BY
PARTIAL MATCHING (PPM), THE OPUS AUDIO CODEC AT 5 MS AND 7.5

MS ALGORITHMIC LATENCY AND THE ELECTROCODEC AT TWO BITS
(EC2) AND THREE BITS (EC3) PER SUBBAND ACROSS THE TEST SET

USING A 6 BIT RESOLUTION AND THE SUBSET OF CONDITIONS WITH A
SIGNAL TO NOISE RATIO ≤ 5 DB. FOR OPUS NEGLIGIBLE VARIATION OF

THE BITRATE ACROSS SNR WAS OBSERVED.

Dataset\Codec ZDLLC PAQ PPM Opus5ms Opus7.5ms EC2 EC3
Test Set 28.6 25.1 37.3 35.2 33.6 20.1 24.3

Test Set (≤5 dB) 32.6 30.4 44.3 35.2 33.6 22.7 27.8

single context in each subband and the N of M selection of
ACE. This way zero latency at bitrates between about 30 kbit/s
to 40 kbit/s could be achieved without major computational
complexity. While the Electrocodec could be used for binaural
sound coding strategies like [14], this seems unlikely for the
ZDLLC, as the information loss in the clinical units is consid-
erably larger compared to the output of the loudness growth
function. Nonetheless, the guaranteed unaffected quality and
intelligibility of the speech signals, which cannot be in all
cases guaranteed for the Electrocodec, could make it desireable
for wireless streaming of audio for CIs.

V. CONCLUSION

In this work a zero delay lossless codec (ZDLLC) for the
compression of the current levels, given in clinical units, of
cochlear implants (CIs) was investigated. The current lev-
els contain only the relevant information for the CI user.
The investigated ZDLLC used arithmetic coding supported
by several contexts which estimated the conditional symbol
probabilities and context mixing, which was implemented by
an artificial neural network. The ZDLLC was compared to
the lossless algorithms PAQ and PPM as well as the lossy
audio codec Opus on the TIMIT speech corpus using several
noisy conditions. At a data resolution of six bit, the ZDLLC
achieved a mean bitrate of 28.6 kbit/s at zero latency compared
to 33.6 kbit/s to 35.2 kbit/s and a latency of 5 ms to 7.5 ms for
the Opus audio codec and, at very high latency, 25.1 kbit/s for
PAQ and 37.3 kbit/s for PPM. The results suggest that lossless
compression of the clinical units can be beneficial for wireless
streaming of audio for CIs.
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