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Abstract. This work presents an approach to optimize the weights of
a discrete Hopfield network as mixed integer linear program (MILP). As
the original formulation involves a sign-function, it is not differentiable,
but parameter optimization using a (mixed integer) LP is possible. As
autoassociative memory, a key question is the amount of patterns which
can be stored in such a Hopfield network. In this work it is shown, that
the traditional storage description models are far inferior to a globally
optimized solution which can be obtained with a MILP. In contrast to
a gradient descent based optimization is the proposed approach nearly
parameter free and independent from seeding and other factors which are
crucial for differentiable programming. Additionally it is possible to en-
force sparsity constraints on the weights. Such additional constraints im-
prove the generalization of such a model and make the Hopfield network
more stable for the case of outliers or missing values. Several experiments
demonstrate the effectiveness of the model.

Keywords: Mixed Integer Linear Program, Hopfield network, sparse
models

1 Introduction

The basic concepts of neural networks go back to the 40th and 50ths, e.g. in
1943, McCulloch and Pitts formulated their idea for logical calculus using con-
cepts from nervous activities [27]. Based on these foundations, binary Hopfield
networks were introduced as associative memories in 1982 [18]. It is a one-layer
recurrent network that can store and retrieve patterns. In a d-dimensional space,
the later explained Information storage prescription can store about 0.138d pat-
terns [9], whereas the Pseudoinverse rule allows to store up to d patterns. The
theoretic analysis in [38] estimates 2d as the upper limit of patterns which can
be stored in a Hopfield model. It will turn out, that our proposed MILP solution
can reach this upper limit. To the best of our knowledge, this is the first practical
solution for estimating network weights providing maximal storage.

Nearly all existing neural network models are nowadays modified to differen-
tiable neurons and commonly trained using gradient descent based optimization
and auto differentiation. Such optimized systems can be summarized with the
term differentiable programming [7]. Indeed, it is well known that the gradient
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descent based optimization is prone to convergence problems, overfitting or get-
ting stuck in local minima, so that many different (differential) approaches exist
to overcome these issues, e.g. using special optimizers (adam, sgdm, etc.), drop-
out layers, etc. Note, that even though the Hopfield networks are an established
topology, they received increasing attention in the past [32]. Please also note,
that so-called modern Hopfield Networks consist of non-binary output variables
which have a significantly higher capacity [2].

In this work, the non-differentiable Rosenblatt perceptron is revisited and
used for modeling a Hopfield network. For the optimization of such a network,
a mixed integer linear program is proposed. The optimized network weights can
then be assembled to a Hopfield network and used for forward inference on
unseen data. The formulation as MILP also allows the optimization of integer
constraints and therefore the optimization of the network weights in presence
of an exact step function. Additionally, integration of additional constraints on
the network, e.g. to enforce sparsity, symmetry or binary constraints is possible.
Such constraints allow for an optimization of a most efficient memory represen-
tation. The commonly used and later described information storage prescription
or pseudoinverse rule to compute the weights of a Hopfield Network as well as
differential programming can not fully exploit the storage capacities in contrast
to the proposed MILP variants.

To summarize, this work presents the following contributions:

1. Formulation and optimization of a non-differentiable Hopfield network as
mixed integer LP for given training data.

2. Formulation of additional constraints such as sparseness on weights, symme-
try properties or binary network weights.

3. Evaluation of the optimized model with respect to storage capacities, sta-
bility with respect to outliers or missing data and experiments on image
retrieval or classification.

4. Example code is available online1.

In the following the general formulation of a Hopfield network as well as the
classical storage prescription is described. Then, the basic concepts of mixed
integer linear programming (MILP) are introduced and used to formulate such
Hopfield networks.

Note, that in this work only discrete Hopfield networks with the output of
{−1, 1} are investigated. Still, on different datasets a competitive performance
of the globally optimized Hopfield network is shown, even though the network
is rather simple.

2 Foundations

2.1 The Hopfield Network

Introduced in 1982 [18], a Hopfield network consists of a one-layer recurrent
network with the input dimension being equal to the output dimension. Its main

1 http://www.tnt.uni-hannover.de/staff/rosenhahn/HopfieldNetExamples.zip
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purpose is to act as autoassociative memory, e.g. for a given tiny sample, the
memory should retrieve a piece of data. Hopfield networks can be applied in de-
noising or removing interference from an input or they can be used to determine
whether the given input is known or unknown.

The units in Hopfield nets are binary threshold units ∈ {−1, 1}, the interac-
tions ωi,j between neurons are defined to be symmetric (ωi,j = ωj,i) and no unit
has a connection with itself (ωi,i = 0). The classical form of a Hopfield network
is shown in the left of figure 1.

Such a model can be based on the formulations of McCulloch and Pitts
[27]. They formulated their idea for logical calculus using concepts from nervous
activities. In the original formulation of McCulloch and Pitts, each neuron can
emit two states yi ∈ {0, 1}, thus it can fire or not fire. A neuron consists of
n input lines on which the signals (x1 . . . xn) are present. Calculation works
as follows, the input signals (x1 . . . xn) are added to the sum x. The sum x is
compared with the threshold (or bias) b. If the sum of the excitations is greater
than or equal to b, the neuron returns 1, otherwise it returns 0. In 1958, Frank
Rosenblatt published his perceptron model which extends the summation to a
scalar product, followed by a step function [34]. This is the basis for neural
networks up till now. The perceptron can be summarized as

yi =

{
1 :
∑

j ωijxj + bi > 0

0 : else
(1)

The bias value b corresponds to the decision threshold and ωij are learnable
parameters. A combination of such perceptrons in a directed acyclic graph leads
to a classic (e.g. fully connected) neural network.

Thus, a Hopfield network can be expressed as a fully connected recurrent layer
with the amount of neurons being equal to the input dimension. The matrix of
the network weights should be symmetric and form a hollow matrix. Note, that
lifting the binary values y ∈ {0, 1} to y′ ∈ {−1, 1} can be accomplished by the
simple (linear) operation y′ = 2y − 1.

Let X = [x1, . . . , xn] be a matrix of size m×n containing m-dimensional vec-
tors with binary values ∈ {−1, 1}. For the computation of the network weights,
the information storage prescription proposed in [9] can be applied:

ω = XXT (2)

∀i = 1 . . . n : ωi,i = 0 (3)

bi = 0 (4)

Note, that ω is a symmetric matrix with zero entries on the diagonal. This
formulation is the so-called Baseline1 in the experiments.

An alternative to compute the weight factors is to use the so-called pseudoin-
verse or projection rule [31], which is defined as

W = XX+ (5)

The matrix X+ denotes here the pseudoinverse. We call this method Baseline2
in the experiments. Once the weights ωi,j , bj are computed, the Hopfield network
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Fig. 1. Left: Visualization of a Hopfield Network. Right: Elements of a Hopfield Net-
work as MILP. The black nodes indicate that these weights are set to zero.

can be evaluated as

x′i =

{
1 :
∑

j ωi,jxj + bj > 0

−1 : else
(6)

Note, that bj is set to zero for both baselines and later for the neural network
and all MILP variants to allow for a fair comparison across the methods. As the
output generates a vector with entries ∈ {−1, 1}, it can immediately be used
again as input, until a convergence (e.g. fix point) is reached.

Hopfield nets have a scalar value associated with each state of the network,
referred to as the energy, E, of the network, where

E = −1

2

∑
i,j

ωi,jxixj +
∑
i

bixi (7)

The optimization of this energy formulation in combination with the involved
step-function will be later used in the proposed mixed integer linear program.

The capacity of the Hopfield Network to store patterns depends on the used
learning algorithm. The first learning rule applied to store patterns was Hebbian
learning [18], which yields Baseline1. Other rules have been formulated and con-
sidered in [1] and [12]. The implementation of Hopfield Networks in hardware
and learning sparse networks have been considered in [36]. Hopfield neural net-
works have been applied for image processing [30, 17] or solving combinatorial
problems [33, 20].

2.2 Mixed Integer Linear Programming

Linear programming (LP) is a method for the minimization (or maximization)
of a linear objective function, subject to linear equality or inequality constraints
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[11]. To summarize, any LP can be expressed as

min cTx s.t. Ax ≤ b (8)

A standard approach for solving such a LP is the simplex algorithm. Note, that
solvers also accept equality constraints of the form Aeqx = beq which are directly
transformed in two inequality constraints of the form Aeqx ≤ beq and −Aeqx ≤
−beq. It is also possible to allow for the optimization of integer constraints [28,
13], which is then called a mixed integer linear program. The solvers are then
using concepts such as branch-and-cut or branch-and-bound.

A (MI)LP is a very powerful tool, which allows the efficient optimization
of graph problems, e.g. graph cut, graph matching, max-flow or network opti-
mization [4, 23], logic inference [25] and even reasonable efficient optimization of
NP-hard problems, such as the traveling salesman problem. The work [39] gives
a comprehensive introduction to formulate logic calculus (and beyond) using
mixed integer linear programs. It is also possible to optimize decision trees [40]
or support vector machines [29] using respective LP formulations.

Neural networks and linear programming have been brought together in the
context of network fooling and model checking [16], already trained networks
can be analyzed using LPs [5]. The work [35] introduces an approach to remove
unneccessary units and layers of a neural network while not changing its output
using a MILP. The formulation of a linear threshold unit (LTU) as LP, which is
similar to the perceptron desribed above, has been presented in [26]. Based on
this formulation, several LTUs are iteratively connected using a so-called multi-
surface method tree. The special case of binary neural networks using MILP has
been presented in [22]. Interestingly, binarized neural networks (BNNs) which
are neural networks with weights and activations in (−1, 1) can gain compara-
ble test performance to standard neural networks but allow for highly efficient
implementations on resource limited systems [21]. In [37] a mixed integer linear
program to optimize neural network weights is presented. This work also focusses
on network compression whereas in Hopfield networks it is not possible to reduce
the amount of neurons. Instead, in this work different sparsity constraints are
proposed and evaluated.

There are two arguments why a MILP solution may be disadvantageous, as
stated by [14] (a) scaling to large datasets is problematic, as the size of the
generated equations scales with the size of the training set and (b) solutions
with provable optimal training error can overfit, thus training data is perfectly
explained, but test performance is much worse. One reason for (a) is, that all
data, as well as the network computations, need to be stored simulatenously and
expressed as equality and inequality constraints. One option to alleviate this is
an iterative training procedure: It is possible to globally optimize for batches
and to train the weights iteratively over a couple of epochs [37]. During each
iteration it is required to add constraints which enforce a small distance to earlier
computed weights. Since it is comparable to a gradient based optimization, this
variant is omitted here and only small datasets which can be globally optimized
are considered. In this work, the second challenge is adressed by the proposed
sparsity constraints.
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3 Modeling a Hopfield Network as MILP

The Hopfield network requires the computation of a neuron which yields to the
computation of a scalar product, followed by a step function which can also
be expressed as a greater as, >. The formulation for > can be expressed as
MILP using a so-called Big-M formulation. Note, that the letter M refers to a
(sufficiently) large number associated with the artificial variables (see also [39]).
The condition

a > b ↔ δ =1

can be formulated as

a ≥ b+ ε−M(1− δ) (9)

a ≤ b+Mδ (10)

δ ∈ {0, 1} (11)

The verification of these equations is straight forward:

a > b→ a ≥ b+ ε−M(1− δ) → δ = 1 ∨ 0

and a ≤ b+Mδ → δ = 1 (12)

a ≤ b→ a ≥ b+ ε−M(1− δ) → δ = 0

and a ≤ b+Mδ → δ = 0 ∨ 1 (13)

Based on equation (1), the scalar product and the > formulation it is possible
to model the activation of a perceptron with weights ω, bias b and input x.
Please note, that the outcome is a binary vector which is later denoted as slack
variable st. This output can then be uplifted to {−1, 1} and used for energy
minimization.

Let X = [x1, . . . , xn] be a set of m-dimensional vectors with binary values
∈ {−1, 1}. The parameter I indicates the example of the dataset and i the
index of a neuron. Note, that the amount of neurons corresponds to the input
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dimension. Then the MILP looks as follows:

min fTx s.t. (14)

∀I = 1 . . . n, i = 1 . . .m
m∑
j=1

ωijxj,I + bi − spI,i = 0 (15)

ε−M(1− stI,i)− spI,i ≤ 0 (16)

spI,i −MstI,i ≤ 0 (17)

2stI,i − δI,i = 1 (18)
m∑
j=1

1

2
δI,jxj,I − EI = 0 (19)

∀j = 1 . . .m : ωj,j = 0 (20)

ωi,j − ωj,i = 0 (21)

stI,i ∈ {0, 1} (22)

f(ind(EI)) = −1 (23)

The slack variables sp encode results of scalar products Eq. (15), st encode the
evaluation of the step function Eqs. (16-17), δ the lifting from {0, 1} to {−1, 1}
Eq. (18) and E Eq. (19) the energy to optimize. Equations (20-21) enforce the
symmetry properties and the 0-entries on the diagonal matrix. The vector f
contains only zero entries and only a factor -1 at the positions of the slack
variables containing the loss EI , Eq. (23). All used variables can be ordered as
a large vector and acessed via an index-operation ind(.). Thus, minimizing the
objective function fTx means to minimize the loss. Note, that the variables ωi,i

can also be removed from the system but they are kept for readability.
The equations lead to sparse vector expressions and describe a mixed integer

linear program which can be optimized with standard methods [15].

3.1 Sparsity Constraints

As mentioned in [14], the MILP solution can be problematic for generalization
as no margin or other factor is optimized jointly with the optimization function.
Motivated from other works, such as [3, 6, 10, 8] sparsity can be beneficial for
generalization and fortunately it is easy to enforce during the MILP optimiza-
tion. In the following, two variants are proposed, one is enforcing the sparsity
integer weights e.g. ∈ [−1, 1], whereas the other variant can be applied to im-
ages. It is explicitly exploiting the grid-structure and enforcing only weights in
the neighborhood. For the first variant, the MILP-constraints from the earlier
section need to be extended with

∀i, j = 1 . . .m : ωi,j − ωB
i,j ≤ 0 (24)

−ωi,j − ωB
i,j ≤ 0 (25)

f(ωB
i,j) = 0.001 (26)
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The additional slack variable ωB
i,j contains the absolute value of the weight ωi,j .

The vector f is modified with a small penalizer (with a scale factor of 0.001)
to enforce the sparsity. Minimizing ωB

i,j means to maximize the amount of zero-
entries in ωi,j .

In the case of images or data with a clear topological structure it is also
possible to enforce only connectivity of weights in a close neighborhood. This
is known as local receptive field in image processing. The constraints simply
enforce all weights outside a specific local distance d to be zero:

∀i, j = 1 . . .m : ωi,j = 0↔ dist(i, j) > d (27)

Note, that these variables can also be completely removed from the MILP. For
the experiments on image data (e.g. mnist examples) the pixel distance d has
been set to the value d = 3. The function dist(i, j) is defined as the Euclidean
distance of the point positions.

Fig. 2. Obtained weight-matrices ω for the different proposed variants. (From left to
right): (a) Baseline ωB1, (b) Baseline ωB2, (c) MILP-optimized weights ω, (d) MILP-
optimized weights with Sparsity constraints ωSP (e) MILP-optimized weights as local
receptive field ωLRF

Figure 2 visualizes the outcome of different weight matrices obtained from
the five presented variants, from left to right: (a) Baseline1 ωB1 (Eq. (2)), (b)
Baseline ωB2 (Eq. (5)), (c) MILP-optimized weights ω (Eqs. (14-23)), (d) MILP-
optimized weights with Sparsity constraints ωSP (Eqs. (14-23 + 24-26)) (e)
MILP-optimized weights as local receptive field (LRF) ωLRF (Eqs. (14-23 +
27)). As dataset examples from mnist have been used. The dataset contains im-
ages of size 28×28 which are reordered as a 784 dimensional vector. Whereas the
Baseline and the MILP optimized weight matrices are fully occupied, the sparse
and the LRF variant have a completely different shape on locality and sparse-
ness. The visualization shows that the constraints work exactly as intended.

4 Experiments

Two main research questions are analyzed in the following experiments: (Q1)
What is the maximum storage capacity which can be achieved with a MILP
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optimized Hopfield network? (Q2) How does the MILP optimized Hopfield net-
work perform for applications such as classification under missing data? In the
following respective experiments on the MILP optimized Hopfield networks are
presented to answer the raised research questions, to analyze the storage capaci-
ties and the stability with respect to noisy data. Afterwards we use the Hopfield
networks for classification and compare the generalization and the compensation
of missing values on different datasets. Here, the focus is specifically on learning
with only a few examples.

For the experiments, matlab2021(b) has been used to generate the (in)equality
constraints, boundary conditions and the objective function. For optimization
itself, gurobi v9.1.2 has been used. The timelimit has been set to three hours
and the standard optimization parameters (MIPFocus, Presolve, etc.) have not
been changed. The computation has been performed on 10 physical cores on a
local linux computer.

4.1 Storage Capacities

Fig. 3. Capacities for the two baseline methods with increasing amount of neurons
(indicated by the line thickness). The x-axis shows the amount of training data to store.
The y-axis shows the average amount of bitflips as error measure ( 1

N

∑N
i=1 sum(xi 6=

x′
i)). The left image shows the capacities for storing random patterns and the right

image the capacities for the same dimensions on rescaled mnist data. As the mnist data
is highly correlated, the storage capacities decrease significantly. The red line shows
the memory capacities of Baseline1 and the blue line the capacities of Baseline2.
For random patterns, Baseline2 can store N − 1 patterns successfully. The largest
model consists of 144 neurons and manages to store exactly 143 samples when using
Baseline2. Afterwards the model completely fails. For mnist data, for 144 given neurons
the Baseline2 only manages to store approx. 73 data samples.

In the first experiment, the general capacities of the baseline methods for an
increasing amount of neurons are analyzed. As stated in the introduction, the
Hopfield Network can store up to N uncorrelated patterns. To verify this, we
generate random binary patches of sizes 3 × 3, 6 × 6, 9 × 9, 12 × 12 and apply
both baselines on a different amount of training images. Figure 3 shows in the
left the outcome for storing random (uncorrelated) patterns, whereas the right
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Fig. 4. Capacities for the two baseline methods, a shallow neural network and the
MILP solution. The amount of neurons is set to 20. As observed before, Baseline1
(red) can only store a few random patterns. Baseline2 (red dashed) exactly 19 (and
then it fails), the neural network (black) slightly more (∼ 25), whereas the MILP
version can go up to around 35 elements.

diagram shows the outcome on mnist data [24] of similar size. The x-axis denotes
the amount of example images ranging from 1 to 150 which are independently
used for training. Figure 3 (left) shows that the model can capture exactly N−1
(random, uncorrelated) patterns with Baseline2. The storage capacities decrease
significantly for mnist data (right). For example on the image size 12×12 = 144
only around 72 images can be memorized effectively. This effect is one of the
reasons, why Hopfield and colleagues also discussed the concept of unlearning in
Hopfield networks [19].

The work [38] estimates an upper bound of 2N as storage capacity of a shal-
low neural network with N neurons. Furthermore, the author notes that the
result is not tied to any particular algorithmic formulation of neural networks.
Figure 4 shows the storage capacities for 20 memory elements on both baselines,
a neural network implementation and the MILP optimized model for random
patterns. The outcome for the baselines is in line with the outcome of figure 3
(left), for 20 neurons, exactly 19 patterns can be stored with Baseline2. The
neural network is a shallow network with 20 neurons and a tanh activation func-
tion. It is optimized with classical back propagation using the sgdm optimizer
(100 epochs, InitialLearnRate 0.001, MiniBatchSize 5). Here, the symmetry of
the weight matrix, as well as the zero entries on the diagonal matrix have been
enforced during optimization. This has been achieved by using weight sharing
and by setting the diagonal entries and its learning rate to zero. The neural
network performs better than the baselines. In contrast to these approaches, the
MILP-Model performs superior. One reason is, that the MILP can take all infor-
mation simultaneously into account for an optimal arrangement of the weights.
As the patterns are based on random samples, locality and sparsity have been
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omitted for this experiment. Note, that the MILP-optimized network is getting
very close to the upper bound of 2N which has been theoretically proven nearly
40 years ago [38]. Please note, that a MILP-optimized Hopfield network can
generate a global optimal solution, thus the storage capacities are maximized in
the proposed formulation.

Fig. 5. Capacities of the Hopfield Networks on mnist examples for the two Baselines,
a neural network, as well as the standard MILP, the MILP with Sparsity constraints
and the MILP with LRF.

In the following we perform a similar analysis on the mnist dataset and sum-
marize the outcome in figure 5: For the first experiment, mnist images have
been downscaled to the size 9 × 9 pixels resulting in 81 neurons for memoriza-
tion. Then the Hopfield network weights for the two baselines, an iteratively
trained neural network (as before) as well as the standard MILP, the MILP with
Sparsity constraints and the MILP with LRF have been trained for an increasing
amount of data points. Afterwards, the memorization for each training sample
is recalled and the average amount of bit flips is used as error metric, similar as
before. Whereas the Baseline1 can only memorize a few images, does Baseline2
perform much better for a small amount of data. Baseline2 manages to store
around 40 images. Once a certain limit has been reached, Baseline2 starts to fail
completley, as described before. The neural netork performs better and can store
approx. 60 patterns before errors are introduced. The MILP can store the most
amount of patterns, around 80. Additionally, the storage capacities of the sparse
variants are shown. The overall capacities are (slightly) smaller, as many entries
are enforced to be zero. Especially the LRF variant has significantly less pa-
rameters available for optimization which causes a slight error reasonable early.
For an increasing amount of examples, this error is getting similar to the other
variants (including the neural network).

Figure 6 shows the amount of zero-entries of the computed weight matrices
in percent. As can be seen, the Neural network, the standard MILP and the
baselines make use of the full matrix and Baseline2 degenerates after 40 samples.
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Fig. 6. Sparsity (y-axis) of the Hopfield Networks for different amounts of mnist ex-
amples (x-axis) for the two Baselines, a neural network, as well as the standard MILP,
the MILP with Sparsity constraints and the MILP with LRF.

Only the sparse and the LRF variant heavily reduce the amount of entries while
maintaining a competitive performance.

To summarize, all MILP solutions perform competitive, especially for a larger
amount of data to memorize and also the error increase behaves more linear and
incremental. Note, that the MILP provides a global optimal solution for the
network weights, thus a better performance in memorization is not possible.
Compared to Baseline2, the amount of stored data (figure 5) is nearly doubled
which is consistent with figure 4.

Figure 7 shows memorization results in presence of noise. The first row con-
tains the input image with increasing noise (starting form 0). The other rows
show the results using (row 2) the Baseline 1 ωB (Equation (2)), (row 3) the
Baseline 2 (Equation (5)), (row 4) a shallow neural network, trained with back-
propagation, (row 5) the MILP-optimized weights ω (Equations (12-21)), (row
6) the MILP-optimized weights with Sparsity constraints ωSP (Equations (12-21
+ 22-24)) and (row 7) the MILP-optimized weights as local receptive field ωLRF

(Equations (12-21 + 25)). The amount of data to memorize has been selected ap-
propriately so that (except Basline 1) all approaches can successfully memorize
the input data (left column). Even though the memorization capacities of the
MILP versions (red) are much higher compared to the neural network, especially
the sparse variant generalizes in a similar quality of the neural network in the
presence of noise. Note, that once the memory limits of the baselines have been
reached, they produce useless results. Only the MILP and the neural network
show an incremental error behavior.

In this section the storage capacities of MILP optimized Hopfield networks
are analyzed. It is shown that the proposed three variants (MILP, MILP with
sparsity and MILP with LRF) can store more data compared to the baseline
implementations or differentiable programming.



Hopfield Networks as MILP 13

Fig. 7. Memorization results in presence of noise: First row: Input image with increas-
ing noise (starting form 0). Reconstruction using: (2nd row) the Baseline 1, (3rd row)
the Baseline 2, (4th row) a shallow neural network, (5th row) the MILP-optimized
weights ω, (6th row) the MILP-optimized weights with Sparsity constraints ωSP , (7th
row) the MILP-optimized weights as local receptive field ωLRF . The amount of training
data was selected to keep (except Basline1) competitive in the original memorization
(left column).

4.2 Classification using Hopfield Networks

For the next series of experiments, a learned Hopfield network is applied to a
classification task. The classical wine, zoo and breastEW dataset have been used.
The first two datasets are multicriterial classification tasks, with 3 categories for
the wine dataset and 7 categories for the zoo dataset, whereas the breastEW
dataset is a binary task.

To transform a numerical feature in one dimension into a binary one, k-
means-clustering on this dimension (e.g. k = 3) is applied and used for a one-hot
encoding. If e.g. the value 0.78 falls into cluster 2 (out of 3), this value is encoded
as (−1, 1,−1). Thus, e.g. the 30-dimensional features of the breastEW dataset
are converted into a 90-dimensional binary dataset. From this dataset examples
are used to train the Hopfield network and an unseen example is classified by
feeding it into the Network and by performing a matching of the obtained values
with the memorized dataset.

In the following, two factors are analyzed, (a) the performance behavior when
using an increasing amount of samples for training, and (b) the stability with
respect to missing data (from 0 to 50%). For these experiments we use a deci-
sion tree, a random forest and a neural network for comparison (on exactly the
same train and test data). All experiments have been repeated 10 times and the
diagram in figure 8 shows the obtained mean performance values. The neural
network is a shallow network with the same amount of neurons as the Hopfield
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Fig. 8. Left: Classification performance for learning from small data. The x-axis shows
the number of examples which have been used for training and the y-axis the clas-
sification performance on the unseen test data. Right: Classification performance for
missing data. The x-axis shows the amount of missing data (up to 50 %). The Hopfield
network can memorize from the missing data and therefore classify the test data better
then the decision tree, random forest or a neural network. The sparse MILP solution
is superior to the non-sparse MILP solution which is highly sensitive to missing data.

network and a softmax classification layer. As can be seen, already with two or
three examples (for each class), a competitive classification performance can be
obtained which is pretty constant for the Hopfield network and increasing for a
decision tree (which is known to be sensitive to overfitting) and a random forest.
For the experiment in figure 8 (right), the number of examples has been kept
fixed to the number 4. For inference, the samples have been disturbed with a
random amout of zero-entries, ranging from 0 to 50%. Here the outcome is even
more clear: The (sparse) Hopfield networks can memorize from missing data and
yield a much better classification accuracy on the test sets. The sparse MILP
solution is superior to the non-sparse MILP solution which is in line with the
discussion in [14].
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5 Summary

This work presents an approach to optimize the weights of a Hopfield network
as mixed-integer linear program. As the original formulation involves a sign-
function, it is not differentiable, but parameter optimization using a (mixed in-
teger) LP is possible. As autoassociative memory this work analyzes the amount
of patterns which can be stored in such a discrete Hopfield network. It is shown,
that the traditional storage description models and neural network based train-
ing with differential programming are inferior to a globally optimized solution
which can be obtained with a MILP. As a global optimal solution is obtained
by using a MILP, the approach is nearly parameter free and independent from
seeding and other factors which are important for differentiable programming.
Additionally it is possible to enforce sparsity constraints on the weights. Such
additional constraints can improve the generalization of such a model. Two base-
line methods, a neural network, the MILP formulation and two sparse variants
have been formulated and compared. It turns out, that the MILP variant is ca-
pable for an optimal usage of the available memory, but can be more sensitive
in case of noise. Experiments on the storage capacities and examples on clas-
sification using Hopfield networks demonstrate the general applicability of the
optimized model.
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