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Abstract— Human head pose estimation from images plays
a vital role in applications like driver assistance systems
and human behavior analysis. Head pose estimation networks
are typically trained in a supervised manner. Unfortunately,
manual/sensor-based annotations of head poses are prone to
errors. A solution is supervised training on synthetic training
data generated from 3D face models which can provide an
infinite amount of perfect labels. However, computer generated
face images only provide an approximation of real-world images
which results in a domain gap between training and application
domain. To date, domain adaptation is rarely addressed in
current work on head pose estimation. In this work we propose
relative pose consistency, a semi-supervised learning strategy
for head pose estimation based on consistency regularization.
It allows simultaneous learning on labeled synthetic data and
unlabeled real-world data to overcome the domain gap, while
keeping the advantages of synthetic data. Consistency regular-
ization enforces consistent network predictions under random
image augmentations. We address pose-preserving and pose-
altering augmentations. Naturally, pose-altering augmentations
cannot be used on unlabeled data. We therefore propose a
strategy to exploit the relative pose introduced by pose-altering
augmentations between augmented image pairs. This allows the
network to benefit from relative pose labels during training on
the unlabeled, real-world images. We evaluate our approach
on a widely used benchmark (Biwi Kinect Head Pose) and
outperform domain-adaptation SOTA. We are the first to
present a consistency regularization framework for head pose
estimation. Our experiments show that our approach improves
head pose estimation accuracy for real-world images despite
using only labels from synthetic images.

I. INTRODUCTION

Head pose estimation (HPE) describes the problem of
predicting the orientation of the human head. It is a vital
part of many vision algorithms for facial analysis. HPE can
be used for automatic assessment of the focus of attention,
e.g. in driver assistance systems [4] or for human behavior
analysis. It is also the starting point for many gaze estimation
methods [42]. Furthermore, HPE is closely related to face
alignment and is part of many systems for face recognition.

Due to the many applications, there has been a lot of
progress in this field of research, especially through deep
learning methods. Nevertheless, collecting the required train-
ing data is still a challenging task for several reasons. Manual
annotation is a problem, because humans cannot accurately
annotate a 3D head pose from a 2D image. This has led
to the creation of head pose datasets using devices like
depth sensors and 3D head scans [8], [4], or special tracking
equipment attached to the head [24], [32], [33]. However,
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Fig. 1. From an image with unknown head pose (picture from [8]) two
different augmented versions A and B are created. Augmentations can
be color distortions, blurring, etc., but also pose-altering transforms like
rotations (7 4, ) and flipping. In addition to a supervised loss, our method
allows to train a network on unlabeled data with relative pose consistency
between A and B. Relative pose consistency provides an unsupervised loss
to make consistent predictions under different augmentations, but also to
make predictions that comply with a relative pose.

with these recording setups, it is cumbersome and costly to
reach a high diversity in subjects, environments and poses.

A solution is to use synthetic (rendered, computer gen-
erated) face images to provide inexpensive and virtually
unlimited quantities of perfectly labeled data. Several meth-
ods train on synthetic [23], [20], [19], [12], [39], [16]
or synthetically extended (warped) images (e.g. [31], [41]
on 300W-LP dataset [44]). Unfortunately, learning-based
approaches trained only on synthetic data (source domain)
tend to perform poorly on real-world data (target domain)
compared to methods trained on real-world data. This can
be explained by the difference between domains (domain
gap). However, only [16] addressed this issue for HPE by
using a method for domain adaptation (DA).

Similar to [16], our goal is to improve the performance of
HPE on real-world data using only labels from a synthetic
dataset in combination with an unlabeled real-world dataset.
In [16] an adversarial training approach based on domain
adversarial neural networks [10] is used to force the extrac-
tion of domain-invariant features. In contrast, we propose to
tackle the problem using consistency regularization, which
has been successfully used for domain adaptation [9].

Consistency regularization is a semi-supervised learning
(SSL) technique. Semi-supervised learning utilizes labeled
and unlabeled data simultaneously during training. Consis-
tency regularization forces network outputs for the same



input under different perturbations to be consistent. For
visual tasks, these perturbations are typically implemented as
various image augmentations, e.g. spatial transforms. How-
ever, head poses are not invariant to spatial image transforms,
like flipping and rotation. If the ground truth pose is known,
the pose label can be adjusted, however, the ground truth
pose is unknown for our target-domain data. In this work,
we therefore propose to take advantage of relative pose.

The relative pose, which we store in a relative pose
label, is the pose difference between two realizations of
the same input (see Fig. 1 for an example). Recalling that
training with consistency regularization requires different
realizations of the same input, we implement relative pose
label in a consistency training framework (see Figure. 3 for
an overview of our method). This extends the consistency
supervision from static augmentations to relative pose labels.
As a consequence, the network is trained not only to make
consistent predictions, but also predictions that comply with
the relative poses. Our consistency-enforcing method does
not require absolute pose information and can therefore be
used with unlabeled data samples in semi-supervised or
domain-adaption scenarios. We show the effectiveness of our
approach on the popular BIWI Kinect Head Pose estimation
benchmark [8]. Our approach can also be adapted to other
pose estimation problems.

Our main contributions are as follows:

o We show, for the first time that consistency regulariza-
tion can be used for pose regression problems.

o We propose relative pose consistency, a novel extension
to consistency regularization.

e We achieve state-of-the-art results for a challenging
domain-adaptation problem on a head pose benchmark.

II. RELATED WORK
A. Head Pose Estimation

In recent years, traditional approaches based on facial
landmarks and 3D face models are mostly superseded by
deep learning methods [31]. In addition to images, different
modalities such as depth images [8] or temporal information
[12] can be used. In this review we will focus only on deep-
learning methods for HPE from a single RGB image.

The first convolutional neural networks (CNN) to directly
regress the head pose from an image are presented by
Anh et al. [1] and Patacchiola and Cangelosia [28]. Recent
works propose variations of loss functions and network
architectures. Ruiz et al. [31] combine a regression loss
with binned pose classification, by assigning continuous
pose to discrete pose categories (bins). Shao et al. [34]
use a similar combined loss, but also evaluate the effect of
adjusting the margin around the face image that is fed into
a CNN. Similarly, Lathuiliere et al. [21] evaluate various
factors of deep regression, like hyperparameter selection or
image preprocessing, in the context of head pose estimation.
Wang et al. [39] present a coarse-to-fine approach, where
head pose is coarsely classified in bins, and later refined by
regression. An attention based network structure for HPE

is proposed by Yang et al. [41]. Their goal is to extract
a set of representative features by learning a fine-grained
structure mapping before a feature aggregation step. Zhou
et al. [43] extend the work of [31] to full-range HPE by
proposing a wrapped loss that allows training with the full
range of yaw angles (-180°,180°]. They further show that
a small model, EfficientNet-BO [36], can reach SOTA HPE
performance. In contrast Gu et al. [12] present an approach
for temporal prediction of facial features. They propose to
use a recurrent neural network (RNN) on top of a VGG16
network [35] for joint estimation and tracking of head pose in
videos. The above methods can be seen as orthogonal to our
approach, because we are not trying to improve supervised
performance with new losses or network architectures for
HPE. For simplicity and comparability we focus on Mean
Squared Error (MSE) loss and ResNet [14] network archi-
tecture. Nevertheless, our method can be applied to other
loss functions or network architectures as well.

Another approach to HPE is multi-task learning [29], [17],
[51, [30], [38]. In this setting, multiple tasks like HPE,
landmark detection, age estimation, visibility, etc., are solved
simultaneously. A benefit of multiple tasks is that multiple
data sources can be used for training, which considerably
increases the amount of training data. In contrast, our method
does not focus on sharing knowledge between related tasks,
but transferring knowledge between domains.

An interesting unsupervised approach is presented by
Mustikovela et al. [25]. In their work, a viewpoint esti-
mation network is trained purely via self-supervision with
an analysis-by-synthesis framework using a network similar
to HoloGAN [26]. Similar to our work, they enforce flip
consistency by applying a flip consistency loss. In contrast,
their loss forces synthesized images from a flipped latent
code to be consistent.

Lastly, it is a common approach to use synthetic face
datasets from 3D models for HPE [23], [19], [39], [20],
[12], [16]. This has the advantage of learning from a high
amount of diverse images with perfect labels. To date, [12]
and [19] are publicly available datasets. Except for Kuhnke
and Ostermann [16], the related works do not explore any
domain adaptation or semi-supervised techniques.

[16] improve HPE for an unlabeled target dataset by
enforcing a network to extract domain-invariant features.
They use synthetic face images from [12] as labeled source
domain and real-world images as unlabeled target domain. To
account for an only partially-shared label space, they apply a
weighted resampling of the source domain during training to
filter out dissimilar samples. In this work, we tackle the same
problem but choose a completely different approach. Our
approach does not need an additional discriminator network
with adversarial training. Furthermore, our approach does not
require to resample the source data.

B. Consistency Regularization

Consistency-enforcing methods provide state-of-the-art
performance for semi-supervised learning. During training,
consistent network predictions for unlabeled data under input



and network perturbations are enforced. Although one can
find many terms and variants like self-ensembling, con-
sistency regularization, self-training, temporal ensembling,
or pseudo-labels, the core principle of enforcing consistent
outputs is similar. Consistency-enforcing methods have also
been successfully applied to domain adaption scenarios,
where the unlabeled data is from another domain. While
first used as semi-supervised methods, these principles are
now popular for unsupervised pre-training of neural networks
and paved the way for modern contrastive (self-supervised)
methods like SimCLR [6], MoCo [13] and BYOL [11].

Laine and Aila [18] proposed two self-ensembling meth-
ods, II-Model and temporal ensembling. Both methods en-
force consistent network predictions for the same input
under different stochastic input augmentations and network
perturbations. In this case, dropout was used to provide
network perturbations. The II-Model randomly augments the
same input twice during an iteration and forces consistent
predictions. In contrast to the II-Model, temporal ensembling
forces network predictions over multiple previous training
epochs to be consistent to the current prediction. Self-training
and training with pseudo-labels, e.g. [40], [22], can be seen
as a variant of temporal-ensembling. The Mean Teacher
method by Tervainen et al. [37] adapted this idea but instead
of reusing previous predictions, they added a teacher network
that is an average of previous network weights. The teacher
network predictions and the current model (named student)
predictions are forced to be consistent. French et al. [9]
applies the Mean Teacher method to domain adaptation and
proposes modifications to improve DA performance.

To our knowledge consistency regularization has not been
applied to head pose estimation, or any pose estimation task
before.

III. METHOD

Semi-supervised learning is typically used to learn from a
large dataset which is only partially labeled. We take up this
idea for domain adaptation to learn from labeled synthetic
images (source domain) and unlabeled real-world images
(target domain). On the one hand, synthetic data provides
perfect labels for a wide variety of poses. On the other, it
only provides an approximation of real-world image features.
Real data provides real-world features but lacks annotation
quantity and quality. Combining them in a training scheme,
where both datasets can be used simultaneously, is a promis-
ing way to improve performance on real-world images.

We will first introduce the required notations and baseline
supervised learning. Then, we will describe the consistency
regularization framework. Subsequently, we will describe the
concept of relative pose labels and how these are embedded
into the training framework. Finally, we discuss how we
avoid degenerate solutions with consistency regularization.

In a semi-supervised or domain-adaptation scenario,
data is available from the labeled source domain D, =
{(«f,y$)}i=,, where ng is the number of data samples ¥ €
X and associated labels y; € Y. For head pose estimation,
z is an image of a head and y is a vector of the three
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Fig. 2. Illustrations of the studied image augmentations. Each augmentation
transforms the input image with random transformation parameters. The
left images in each square show the inputs and the right images randomly
transformed outputs. For synthetic images, a random background is added.
Top row images from [8] and bottom row images from [12].

corresponding Euler angles of the head. We are interested
in utilizing the unlabeled target data D, = {(«!)}"*;, which
includes only samples but no labels.

A network f can be trained using the source data (X
and Y;) and a supervised loss. For head pose estimation the
supervised loss is typically the Mean Squared Error

bse(9,9) = 19—y, (1)

between the predicted Euler angles §j = f(x), and the ground
truth angles.

A. Consistency Regularization Framework

Stochastic input perturbations are a central aspect of
consistency-based models. In practice standard image aug-
mentations like blurring, translation and scaling (usually im-
plemented as random cropping), horizontal flipping, rotation,
and color distortions provide appropriate image perturbations
(see Fig. 2).

Given a sample z we create two randomly perturbed
(augmented) inputs =’ and x” which are fed into the network
f to produce predictions f(x’) and f(z").

A consistency loss L, enforces that both predictions are
similar. This consistency loss is typically the Mean Squared
Error or KL divergence [3]. We formulate our total loss

Low =D Lmse([@),0) +A Y lmee(f(@), F(2")),

(z,9)€Ds €Dy

Lsuper Lcons
2
with A controlling the relative effect of the consistency term
in the overall loss.
The same stochastic perturbations are applied to both

source and target images. Note that in SSL the consistency
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Fig. 3. Proposed framework for relative pose consistency regularized head pose estimation. Labeled data (in green) from the source domain and unlabeled
data (in blue) from the target domain can both be used in a semi-supervised fashion. Input images Xs and X; are perturbed by stochastic augmentations.
The stochastic augmentation module can also change the pose of the input images by rotation and flipping. This information is stored in the relative pose
label. Source data follows the supervised path (green) to train the pose estimator f. Target data is copied before the stochastic augmentation module which
creates two different augmented versions of the target input. Note that even though the ground truth pose is unknown for X; the relative pose between
the augmented versions X’ and X;”’ can differ and is stored in a relative pose label. The relative pose label and predictions are fed into the consistency
loss. The consistency loss provides supervision from consistency and relative pose labels. f is trained jointly on both losses.

loss is typically applied to samples from both D, and Dy
[18], [37], [3]. Following [9], who use consistency regular-
ization for domain adaptation, we apply the consistency loss
only to samples from the target domain D,. Our framework
is shown in Figure 3.

Unfortunately, flipping and rotation will change the
ground truth label of a source-domain sample and produce
target-domain inputs that break the consistency assumption
that 2’ and z” share the same label. We therefore need to
distinguish between pose-preserving and pose-altering aug-
mentations and need to redefine our loss functions for pose-
altering augmentations. As shown in Fig. 2, pose-preserving
augmentations are random color distortion, blurring, trans-
lation, and scaling and pose-altering augmentations are
flipping and rotation. The required changes for pose-altering
augmentations will be described in the next section.

B. Relative Pose Consistency

Pose-altering augmentations change the head pose. Know-
ing the spatial transformation and the true pose, an aug-
mented image can be relabeled. However, this is not possible
if the true pose is unknown. We create a new consistency loss
based on the relative pose between augmented samples to
benefit from pose-altering augmentations on our real-world
target data.

We will first give a short recap on pose representation
and then provide the interdependence of image rotation and
flipping to the orientation change of the head pose and
required adaptions to the loss functions. Both augmentations
require! that the pose is stored in Euler angles (Tait-Bryan
angles) that describe intrinsic rotations around Z-Y’-X”.
These are known as: roll, yaw, and pitch. This means that
the rotation is performed by three successive rotations around

!For simplicity we describe our method for Z-Y’-X” rotations, but other
representations such as extrinsic rotations around X-Y-Z will also work.

the Z, Y’ and X” axis. Recall that for intrinsic rotations the
first rotation around Z will create a new coordinate system
from which Y’ will be used for the second rotation and so
on. For this representation a rotation around Z can be carried
out independently from Y’ and X" rotations. That means that
any image rotation will result in an additive rotation term to
the roll label.

Augmenting an image with (unknown) rotation r with
two random rotations 74 and rp would result in images A
and B with rotations r 4+ r4 and r + rp, respectively. One
can easily see that the difference in rotation between the
two augmented images is rg — 4 which is the relative pose
difference between the images. To account for this difference
we can change the consistency loss for the roll angle to:

gmse(f(A)mll + (TB - TA)7 f(B)roll)a 3)

where f(A);on and f(B)on describe the predicted rotations.
To use rotation augmentations for the source domain, one can
simply replace rp with 0 and f(B) with the true rotation
label 7.

Flipping is performed by negating the yaw and roll angles
of the flipped image. For the consistency loss, we can negate
the yaw and roll angles of the predictions. A full example,
showing all the angles, with A being flipped and random
rotations would result in

f(A)pitch 1 0
Emse f(A)yaw © [—-1f + 0 7f(B) ) (4)
S(A)ronn -1 TB—TA

where © is the element-wise product. This complete example
is also illustrated in Figure 1. Cases where B, or A and B are
flipped are handled with negating B’s, or A’s and B’s yaw and
roll angles, respectively. Note that the information provided
by a relative pose only influences yaw and roll angles, as the
pitch angle is untouched by rotation and flipping.



C. Avoiding degenerate solutions

Several works report difficulties when training with con-
sistency regularization. In contrast to previous works, we
apply consistency regularization to a regression problem and
therefore use a different loss combination. For this reason,
instead of class logits, we regularize the predicted pose
angles. In the following we will address these difficulties
and how we dealt with them.

The first difficulty is the selection of A. [18] found that
the network can get easily stuck in a degenerate solution if
the unsupervised loss component (L.y,s) is too high in the
beginning of the training. As a solution, they ramp-up A from
0 to 1 during training. The same procedure was also adopted
in [37]. In contrast, French et al. [9] replaced the ramp-up
with a confidence threshold. They utilized the predicted class
activations as probabilities and the loss of all samples with
activations below the threshold is weighted to 0.

In our case we found that high A\ values usually yield
degenerate solutions, regardless of ramp-up or not. Our
explanation is that in order the minimize the consistency loss
the network can learn to output only a constant. However,
we found a good indication on how to set A comes from
the supervised loss. As a simple rule, the regularization
feedback should not be stronger than the supervised loss.
Preliminary experiments showed that consistency training is
quite robust and A values in the range [0.1, 0.4] converge
to similar performing networks. For A > 0.5 the consistency
loss became larger than the supervised loss and the overall
performance decreased for both, source and target data.

Another issue with consistency regularization arises if the
labels of the source and target domain do not come from
the same underlying distribution [27]. This is ignored in
many works, because it is assumed that the unlabeled data
contains the same class distribution as the labeled data. As
described by [16], this assumption usually does not hold for
regressions tasks like HPE. For classification, [9] introduced
a class balance loss term that forces the network’s mean
class predictions to be uniform. This helped to avoid a
degeneration to the most dominant class.

Following this approach, we introduce a weighted relative
consistency regularization for HPE. To enforce a more evenly
distributed feedback of the consistency loss, we re-weight
the consistency loss based on the pose predictions. Poses
that are found often in a batch should be weighted down,
whereas rarely appearing poses should be weighted up. In
most natural image collections of faces, the poses are usually
distributed around the pose that is facing the camera. The
same holds true for most head pose datasets. Therefore,
assuming a normal distribution of poses in a batch, we
formulate our weighting:

— (p_ﬂp)z
_ =
wp,=1—e\ 7P

) ®)

where w), is the weight given to a pose angle p (pitch, yaw,
roll) and pp and op are the mean and standard deviation of
all p € P in a batch. In particular, we apply this weight
to all angles independently. To keep A constant between

experiments, we rescale w,, with

Batchsize
Swy

so that the overall weight in a batch sums to one. We compare
the results for weighted and unweighted predictions in our
experiments IV.

Both A\ and re-weighting are associated with the same
underlying problem: an effective setting of the regularization
strength. Although we have made two proposals, we think
that uncertainty or curriculum approaches like [7] are paths
worth looking into for future improvements.

(6)

IV. EXPERIMENTS

In the following, we will analyze the performance of our
method. We conduct three series of experiments.

Supervised only will serve as baseline. These experiments
are trained only with the supervised loss on a synthetic
dataset. These experiments only differ in the use of dif-
ferent augmentation combinations. In comparison to former
results, these experiments can be seen as inter-domain ap-
proaches, as training and testing is done on different datasets.
Consistency regularization uses our proposed consistency
framework. Again different augmentations are evaluated.
Weighted consistency regularization includes the proposed
weighting of angles during training. In comparison to former
results, both consistency experiments can be seen as domain-
adaption approaches, like PADACO [16].

We measure the mean absolute error for every angle and
the overall MAE (mean average error) of them. We report
the mean and standard deviation of these values over 10 runs
using different random seeds. Please note that this is not
the standard deviation of the pose errors, but the standard
deviation of the mean errors over all runs.

A. Data

To validate our method we use revised datasets Syn-
Head++ and Biwi+ proposed by [16]. These datasets are
extensions of the popular face pose datasets Biwi Kinect
Head Pose Database (Biwi) [8] and NVIDIA Synthetic Head
Dataset (SynHead) [12]. For both datasets, [16] provide
labels in Z-Y’-X”-angle representation and face bounding
boxes. SynHead was artificially extended to include more
poses, so that SynHead++ is a superset of Biwi+ in regard
to pose labels. Here, we give a brief overview of the datasets.

Biwi+ is used as real-world, target-domain dataset. It
contains 24 sequences of 20 different subjects recorded with
a kinect sensor. SynHead++ is used as synthetic, source-
domain dataset. It contains images of 10 different rendered
3D head models. The total number of images is 15677 for
Biwi+ and 653910 for SynHead++. All images are cropped
to the given bounding boxes and scaled to 224 x 224 pixels.
Exemplary images and illustrative augmentations are shown
in Figure 2.



TABLE I
AUGMENTATION PARAMETERS. TRANSLATION PARAMETERS ARE GIVEN
RELATIVE TO THE IMAGE SIZE AND APPLIED INDEPENDENTLY FOR X
AND Y TRANSLATIONS. VALUES IN RANGES ARE SAMPLED UNIFORMLY.

Augmentation Parameter Probability
C  Color distortion brightr{ess = 0.4, contrast = 0.4 08
saturation = 0.4, hue = 0.1
B  Gaussian blur o € (0.2, 2] 0.5
S Scale [0.9, 1.1] 1.0
T  Translation [-0.1, 0.1] 1.0
R  Rotation [-20°, 20°] 1.0
F  Flip 0.5

B. Implementation Details

For all our experiments, the pose estimator f is ResNet18
as provided by PyTorch [24] with last linear layer being
replaced by a new linear layer with 512 inputs and 3 outputs
for Euler angle estimation. This is consistent to [16], the
most relevant work to ours.

We use different augmentations schemes throughout the
experiments with parameters provided in Table I. The pa-
rameters of all augmentations are fixed. We used the code?
and parameters from [13] for color distortions and Gaussian
blur. Similar to [9], we process minibatches of source and
target data sequentially, to forces batch normalization to
use different normalization statistics for each domain during
training. For all experiments, we use stochastic gradient
descent with momentum 0.9, Nesterov, a batch size of 84,
and a learning rate set to 0.01.

For our ”supervised only” baselines f is initialized with
the default PyTorch pretrained ResNetl8. The learning rate
is ramped-up to warm start the optimization. During training
A is set to 0. The baselines are trained for 35000 iterations
which is equivalent to /=5 epochs of source data.

For all consistency regularization experiments we fine tune
a baseline model. To make the comparisons fair for all runs,
we select the same supervised only baseline trained with all
augmentations (full). The selected model performs similar to
the average performance of models in this setting. All models
are fine-tuned for 16000 iterations which is equivalent to
~86 epochs of target data. For the consistency regularization
experiments, \ is ramped-up to 0.2, to avoid deterioration
from too strong regularization. For all experiments the per-
formance at the end of training is reported, i.e. no early
stopping is used. It is important to note that performance for
Biwi+ is reported without any augmentations.

C. Results and Discussion

Table II shows the results of our experiments and reports
results of related work. The experimental settings intra
domain, inter domain and self-supervised show related but
not straightforward comparable results. These works train
with real-world images and typically focus on improving
head pose estimation by improved network structures or

Zhttps://github.com/facebookresearch/moco

supervised loss functions. In contrast, our main goal is to
learn from synthetic images and improve performance using
unlabeled real-world images. This is similar to the partial
DA setting of [16]. However, we think it can be valuable to
discuss our results in a broader context of related work.

Intra domain. These numbers show the performance for
methods trained and evaluated on different splits of the same
dataset. Compared to our results and other experimental
settings, higher performance is likely explained by having
no domain gap between train and test set. The performance
is also dependent on the train/test split.

Inter domain. Sometimes called cross-domain or cross-
dataset evaluation, this section shows results where the train-
ing set and test set are taken from different datasets. Most
commonly, 300W-LP [44], a dataset created from real-world
images is used for training. As 300W-LP uses real-images,
the domain gap to Biwi is presumably small, compared to
using synthetic images. The effect (better performance) is
visible if we compare the 300W-LP results to our base-
lines (supervised only). Only [39] use rendered synthetic
images but also a part of the Biwi dataset to train a HPE
model. Our proposed method, weighted relative consistency
regularization (RCRw), performs similar to most works in
this setting, despite using only rendered synthetic images
for pose supervision. Only WHENNet-V [43]) considerably
outperforms RCRw. Compared to WHENNet, additional data
from the (real-world) Panoptic Studio dataset [15] was added
to better match the pose distribution of Biwi. Notably, we
outperform all works for roll error.

Self-Supervised shows that learning head pose can even
be accomplished completely self-supervised. No pose labels
are used during training, instead, a linear regressor that
maps network outputs to pose labels is trained afterwards
on 100 random test set samples. While results are not on
par with recent works, it suggests that there is potential in
self-supervised pose estimation. Training with our proposed
relative pose labels can be seen as a self-supervised approach.

Partial DA shows the results for partial domain adapta-
tion. Like our approach, this setting uses the pose labels of
synthetic face images and unlabeled target-domain images
(Biwi+) during training. Our proposed method RCRw with
full augmentations, slightly outperforms [16]. For roll error,
the improvement to [16] is over one degree. Although we get
worse pitch performance, overall, we are better on average.

Supervised only reveals the effects of augmentations
during “supervised only” training on synthetic data. It is
quite notable that augmentations help to improve target
performance. Color, scale, translation and blur augmentations
create images that might look more similar to the test
set. In addition to these augmentations, flipping or using
flipping and rotations slightly improves the results. However,
augmentations are not sufficient to reach the performance of
related work on the Biwi dataset. These results demonstrate
two of our key assumptions. First, training on a synthetic
image dataset does not provide automatically good results
for a real-world image dataset. Secondly, the tested augmen-
tations alone are not sufficient to force the network to learn



TABLE II
HEAD POSE ESTIMATION RESULTS FOR EXPERIMENTS TESTED ON VARIANTS OF THE BIWI DATASET [8]. VARIANTS: * RANDOM SPLIT (86%/14%",
80%/20%?), + SEQUENCE SPLIT (16/81,21/32), x COMPLETE, PROCESSED BY THE RESPECTIVE AUTHORS, + COMPLETE, PROCESSED BY [16].
EXPERIMENTAL RESULTS ARE GROUPED IN BLOCKS DESCRIBING THE USE OF DATA DURING TRAINING AND TESTING. WE REPORT MEAN AND
STANDARD DEVIATION OF THE AVERAGE ABSOLUTE ANGULAR ERRORS IN DEGREE AND MEAN AVERAGE ERROR (MAE) OVER ALL ANGLES FOR 10
TRAINING RUNS. BEST RESULTS IN BOLD.

AUGMENTATIONS FOR EXPERIMENTS: ROTATION (R), FLIP (F), COLOR DISTORTION (C), SCALING (S), TRANSLATION (T), GAUSSIAN BLUR (B).

Experiment Method Network Training set Test set MAE Pitch Yaw Roll
Anh [1] Custom Biwi*! Biwi*T 293 34 2.8 2.6
Ruiz (Hopenet) [31] ResNet50  Biwit! Biwif!  3.23 3.39 3.29 3.00
Intra domain Gu [12] VGG16 Biwif! Biwit! 3.66 4.03 391 3.03
Lathuiliere [20] VGGI16 Biwitf? Biwit?  3.62 4.68 3.12 3.07
Yang (FSA) [41] Custom Biwit! Biwit!  3.60 4.29 2.89 3.60
Ruiz (Hopenet) [31] ResNet50 300W-LP Biwix 4.90 6.61 4.81 3.27
Yang (FSA) [41] Custom 300W-LP Biwix 4.00 4.96 4.27 2.76
Inter domain Zhou (WHENet) [43] Eff.Net-BO  300W-LP Biwi x 3.99 4.39 3.99 3.06
Zhou (WHENet-V) [43] Eff.Net-BO  300W-LP+[15] Biwi x 3.48 4.10 3.48 2.73
Wang [39] Custom [39]+Biwi*?2 Biwi*?2 4.84 5.48 4.76 4.29
. Mustikovela (SSV) [25] ) 300W-LP Biwitl 6.8 9.4 6.9 42
Self-Supervised 1 ikovela (SSV) [25] Custom 300W-LP+Biwit!  Biwit! 5.8 8.5 49 42
Partial DA Kuhnke (PADACO) [16] ResNet18 SynHead++ Biwi+ 4.13 4.51 4.11 3.78
Baseline (no aug.) 5.36+.28 599435 5.60+.60 4.42+.35
Supervised Basel%ne CS-T-B o 472+.11  571+.18 4.70+.15 3.75+.08
only Baseline C-S-T-B-F ResNet18 SynHead++ Biwi+ 4.65+.09 5.65+.16 4.64+.17 3.65+.09
Baseline C-S-T-B-R 478+.13  571+.20 4.81+.24 3.81+.13
Baseline C-S-T-B-R-F 4.65+.08 5.68+.16 4.69+.16 3.59+.06
" Consistency ~ CR C-S-T-B (no rot/flipy 427+.04 5.67+.06 4.00+£.05  3.13+.03
Regularization RCR C-S-T-B-R (no flip) ResNet18 SynHead++ Biwi+ 4.14+.04 547+.09 4.13+£.05 2.84+.03
(ours) RCR C-S-T-B-R-F (full) 4.15+.03 5.87+.07 3.80+.04 2.78+.02
" Weighted ~ CRw C-S-TB (no rot/flipy 411+£03  524+.07 4.00+£05 3.08+.02
Cons. Reg. RCRw C-S-T-B-R (no flip)  ResNetl8 SynHead++ Biwi+ 4.03+.04 5.22+.07 4.06+.04 2.80+.03
(ours) RCRw C-S-T-B-R-F (full) 4.01+.03 554+.13 3.78+.10 2.71+.03

features that generalize well to real-world images.

Consistency regularization. Our proposed consistency
framework improves the average performance compared to
baselines. Using only pose-preserving augmentations for
consistency regularization (CR), already improves the results
to baselines. Best performance for yaw and roll is gained
when using the full augmentation scheme. Surprisingly, there
is no gain or even slight deterioration for pitch.

Weighted consistency regularization (RCRw). The pro-
posed weighting scheme further improves the results to the
baselines and the non-weighted results. Compared to the
unweighted RCR runs, the weighting produces overall higher
performance and even improved pitch estimation. The full
augmentation setting produced the lowest roll error, even
compared to recent works [41], [43] trained on 300W-LP
and even Biwi splits.

Looking at Table II, pitch error is higher than roll or
yaw for all reported results. For our experiments, pitch
estimation has gained the least from our method. Some runs
without weighting even show some degeneration. We suspect
that pitch estimation seems to be a harder problem. In our
experiments, pitch is consistently underpredicted compared
to ground truth pitch. An explanation could be, that there
is an offset for pitch between the pose origins of Biwi+ and
SynHead++. Most importantly, the pitch angle can not benefit
from the relative pose labels, as the pitch angle is constant
for all our augmentations. In contrast, roll benefits the most

from our relative pose labels. Probably for this reason, we
outperform almost all other work in terms of roll error.

V. CONCLUSIONS AND FUTURE WORK

We present relative pose consistency, a new approach to
improve deep head pose estimation performance in domain-
adaptation scenarios. In this scenario labels are only available
for synthetic images and testing is performed on real-world
images. The method allows pose-altering augmentations, ro-
tation and horizontal flipping, to be incorporated into a con-
sistency regularization framework. In addition, we present
a weighting scheme to improve performance. Compared to
previous work, our approach performs similar or even better,
despite using only labels from synthetic images. However,
there is still a gap to methods trained with real-world image
datasets that are similar to the target domain.

In future work, our framework could also be combined
with other methods, e.g. the domain-adversarial approach of
[16]. However, this is non-trivial, as adding a domain dis-
criminator and pose resampling from [16] to our framework
would raise additional questions about how augmentations
and data streams are handled. Furthermore, it would be
interesting to see a deeper analysis why pitch estimation
performs comparatively poor. Lastly, the concept of relative
pose consistency could be applied to other pose estimation
tasks such as hand or body pose estimation, or scale and
translation estimation methods like [2].
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