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Abstract
Automatic speech recognition for children’s speech is a chal-
lenging task mainly due to scarcity of publicly available child
speech corpora and wide inter- and intra-speaker variability
in terms of acoustic and linguistic characteristics of children’s
speech. We propose a framework for age-invariant training of
the acoustic model of end-to-end speech recognition systems
based on adversarial multi-task learning. We use age informa-
tion additionally to just differentiating between the child and
adult domains and thus force the acoustic model to learn age
invariant features. Our results on publicly available data sets
show that this leads to better leveraging of existing data dur-
ing training. We further show that usage of adversarial multi-
task learning should not necessarily be regarded as a substitute
for traditional feature space adaptation methods, but that both
should be used together for best performance.
Index Terms: speech recognition, child speech, domain adap-
tation

1. Introduction
Automatic speech recognition (ASR) for adult speech has be-
come highly accurate in recent years. However, its performance
for child speech is significantly worse. Since there are many
important application areas of ASR of child speech, research to
improve upon its current performance is essential. Besides ap-
plication for human-computer-interaction [1, 2], accurate child
ASR is especially desirable for therapeutic applications. Exem-
plary use cases are automatic classification of disordered speech
[3], pronunciation assessment [4, 5, 6] and linguistic analysis. It
would greatly facilitate the work of speech language therapists
and could therefore give more children access to early diagnosis
and intervention.

Two main reasons for ASR still performing significantly
worse for child speech than for adult speech can be identified.
First, the high inter- and intra-speaker variability in terms of
acoustic and linguistic characteristics of children’s speech [7, 8]
makes it inherently difficult for models to generalize well. Sec-
ond, much less child speech data to train an ASR system, com-
pared to adult speech data exits [9].

Due to this data scarcity, researchers can not rely on child
speech alone. Instead they often additionally use adult speech.
The existence of major differences in the characteristics of
adult and child speech poses difficulties for the knowledge
transfer. To maximise the benefits of using additional adult
data, an important research area is the development of tech-
niques to bridge the domain gap between adult and child speech
[6, 8, 10, 11, 12, 4]. In addition to the domain gap between
adult and child speech a large gap between children of different
ages exists [13]. Training with adult and child speech should
therefore not be regarded as a two domain problem. Additional

performance gains are expected when the differences between
speech of children of different ages are considered when de-
signing the system.

The domain gap can be addressed both at the acoustic
model as well as at the language model of the ASR pipeline.
In this work we focus solely on the acoustic model and do not
use a language model.

We propose a framework for age-invariant training of the
acoustic model, based on adversarial multi-task learning [14].
While simultaneously training on child and adult speech, we
train a discriminator model to estimate the speaker’s age given
the features of the last layer of the acoustic model. We then de-
fine an adversarial loss, which forces the feature extraction of
the acoustic model to only extract age-invariant features. Our
results show that this is advantageous to domain invariant train-
ing, where only child and adult domains are discriminated.

We compare our framework to the more traditional feature
space adaptation method from [15] and show that the best re-
sults are achieved when adversarial multi-task learning and fea-
ture space adaption are combined.

In recent years, hybrid DNN/HMM speech recognition sys-
tems have been increasingly replaced by end-to-end systems. In
hybrid systems a frame-level forced alignment from a GMM-
HMM system is used to train the DNN to estimate likelihoods,
used as the HMM state observation likelihoods [16]. An end-to-
end system directly transforms the input sequence of acoustic
features to an output sequence of tokens [17]. Most end-to-
end systems are either based on connectionist temporal classi-
fication (CTC) [18], attention-based encoder-decoder networks
[19], RNN transducer models [20], or a combination of them.
In this work we use a simple CTC-based time delay neural net-
work (TDNN) with letters (graphems) as target tokens.

2. Related Work
2.1. Child speech recognition

[2] presents a large vocabulary ASR for child speech. Using a
large proprietary child speech corpus, they achieve a high recog-
nition accuracy. Since most researchers do not have access to
such resources, a large part of recent work into child ASR fo-
cuses on how to incorporate adult data into the training. [6, 8]
and [10] investigate how to best fine tune models trained on
adult speech recognition with child data. Multi-task learning,
where child and adult speech recognition is treated as two com-
plementary tasks is explored in [11] and [12].

[21] proposes a data augmentation scheme, simulating
vowel prolongation that is typically associated with speech pro-
duced by children. [13] shows that child ASR is especially dif-
ficult for children in kindergarten age and younger. They also
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show that even a few years age difference between children in
training and testing data drastically reduces performance.

2.2. Speech domain adaptation

Feature space adaptation methods like vocal tract length nor-
malization (VTLN) [22] and feature space maximum likelihood
linear regression (fMLLR) [23] are commonly used for speaker
adaptation in hybrid systems and have also been shown to in-
crease performance for children’s speech [8]. While these adap-
tation methods have been used for training of end-to-end models
[24], they still require a hybrid model to obtain the adapted fea-
tures. [15] show that the linear relationship between formants
and f0 can be used for an effective frequency normalization for
children’s speech. Their results show similar, or in some cases
even better performance than VTLN for child ASR. Since their
technique only relies on f0 computation its usage in end-to-end
systems is straight forward.

Adversarial multi-task learning [14] has been used for
speaker [25] and domain [26] invariant training of hybrid ASR
systems. In [27] the speaker invariant training is adapted for
end-to-end models.

[4] first applies adversarial learning to domain adapta-
tion for acoustic modeling of children’s speech using a hybrid
model. Using a child-adult domain discriminator, they learn a
front-end feature adaptation network, mapping child speech to
adult speech.

In this work we use adversarial multi-task learning for an
end-to-end acoustic model for children’s speech. Instead of
only discriminating between the child and adult domains, we
additionally use the age of the speaker. [25, 26, 27] and [4]
use a gradient reversal layer (GRL) for adversarial multi-task
learning. When using age information, the discriminator task
becomes non-binary. Due to this, we investigate whether sub-
stituting the GRL by a loss function like the domain confusion
loss from [28] is beneficial. We further compare our framework
with the f0-Normalization from [15], and investigate whether
usage of adversarial multi-task learning can be a be regarded as
a substitute for traditional feature space adaptation methods, or
whether both should be used together.

3. Age invariant training
An overview of the proposed age invariant training is given in
Figure 1. Given a mini-batch of utterances X = {x1, ..., xN},
where each xi is the Mel spectrogram of a whole utterance,
with corresponding transcripts Y = {y1, ..., yN} and age labels
A = {a1, ..., aN}, we train the encoder network with param-
eters θenc and the ASR-decoder network with parameters θasr
using the CTC criterion Lctc.

To enforce an age invariant output of the encoder network,
we use a discriminator network with parameters θage, which
maps the encoder output to a value between 0 and 1. The dis-
criminator gets trained using the cross-entropy loss Lage be-
tween its output and the age label of the utterance. The age
label ai is a value between 0 and 1 and gets computed from the
age of the speaker. It can be interpreted as a soft domain label,
representing the likeness to adult speech. We set it to zero for
the youngest children, 0.8 for the oldest children in the corpus
and linear in between. For all adults it is set to 1.

Instead of using a GRL [14] to optimize the encoder net-
work, such that it maximises the discriminator loss Lage, we
define an adversarial loss Ladv. This loss is similar to the do-
main confusion loss in [28], and is the cross entropy between

the output pa,i of the age discriminator network and an adver-
sarial target aadv

Ladv = − 1

N

N∑
n=1

aadv log(pa,i) + aadv log(1− pa,i). (1)

By choosing
aadv = 0.5, (2)

the loss is minimized, when the confusion of the discriminator is
maximal. We discuss our reasons for choosing this adversarial
loss (AL) over usage of a GRL in Section 4.3.2.

Given these losses, the search for the optimal parameters
θ̂enc, θ̂asr , and θ̂age is formulated by

θ̂enc, θ̂asr = argmin
θenc,θasr

Ltask

(
θenc, θasr, θ̂age

)
, (3)

θ̂age = argmin
θage

Lage

(
θ̂enc, θage

)
, (4)

where the task loss Ltask is the sum of the CTC loss and the
adversarial loss, weighted by a hyper-parameter λ

Ltask = Lctc (θasr, θenc) + λLadv (θage, θenc) . (5)

4. Experiments
4.1. Data sets

4.1.1. Adult speech

As adult speech we use the ”train-clean-100” subset of the Lib-
riSpeech [29] dataset. LibriSpeech is an English read speech
dataset commonly used for large vocabulary continuous speech
recognition.

4.1.2. Child speech

The OGI kids’ speech corpus [30] contains speech from approx-
imately 1100 unique speakers from kindergarten age to 10th
grade. We use only the scripted part of the corpus and utter-
ances shorter than 10 seconds. This results in a total of 47532
utterances. Since the corpus uses only 321 unique prompts, the
variety in speakers is much bigger than the variety in words.
Different strategies for splitting the corpus into training, de-
velopment and test sets have been used in prior work. [31]
randomly chooses utterances for each set and [13, 15] enforce
unique speakers in each set. Instead, we enforce unique prompts
and show in Section 4.3.1 that this is a more difficult splitting
strategy for this corpus. This decision resulted in a training set
of 38010 utterances, and development and test sets of 4697 and
4825 utterances respectively.

4.2. Implementation details

From the audio, we extract Mel Spectrogram features with 64
filter banks. The features are then normalized using the mean
and variance of each individual feature channel and utterance.
During training we augment the data using SpecAugment [32]
frequency and time masking. For each utterance we apply two
frequency and time masks, with size of 6 feature channels, re-
spectively time steps.

For f0-based frequency normalization [15] we extract
kaldi-pitch-features [33]. In addition to the pitch of each frame,
these provide a probability for whether the frame contains voice
or not. We weight the pitch of each frame by this probability of
voicing to compute the mean f0 for each utterance. We warp
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Figure 1: Overview of the proposed model for age invariant training. A discriminator network trained to estimate the age of the speaker
is used to compute an adversarial loss, which forces the encoder network to extract age invariant features.

the speech spectrum like [15] before computing Mel-filterbank
features.

For the encoder network we use a 10-layer TDNN. Each
Layer has a kernel size of 11, a dilation of one and 512 chan-
nels. The disciminator network consists of one 1-D convolution
with kernel size 11, dilation of one and stride of 3, followed
by an average pooling over the time dimension and two fully
connected layers with 64 neurons. The output gets mapped to
a value between 0 and 1 by a sigmoid. The ASR-decoder net-
work is just one 1-D convolution layer with kernel size 1 fol-
lowed by softmax. Since we do not use a language model its
output gets decoded using greedy CTC decoding. Each layer in
all networks, except for the output layers, is followed by a batch
normalization [34] and a ReLU non-linearity. We implement all
models using PyTorch [35].

As a baseline we train only the encoder and ASR-decoder
network without the discriminator network using only the CTC
criterion. To avoid overestimating the gains of the adaptation
techniques, all hyper-parameters, except the weight of the ad-
versarial loss, are tuned to maximise validation accuracy of the
baseline model and are kept the same for all other models.

All models are trained on adult and child data simultane-
ously with a batch size of 64, with half of the batch child data
and the other half adult data, for 50 epochs. Since the adult
corpus contains more utterances than the child corpus, not the
whole adult corpus is seen each epoch. For the evaluation of the
splitting strategies of the OGI kid’s corpus (see Section 4.3.1)
we train only on the child data for only 25 epochs, to avoid
overfitting due to the reduced amount of data. Training is done
using the Adam optimizer [36], a 1cycle learning rate scheduler
[37] with a maximum learning rate of 5 ∗ 10−4 and gradient
clipping.

The weight of the adversarial loss λ (see (5)) is set to zero
at the beginning of the training. At this point, the discriminator
has not learned to differentiate between speaker ages and thus,
the adversarial loss can not give any meaningful signal. We
linearly increase λ from zero at epoch 10 to λmax = 0.5 at
epoch 40.

4.3. Results and discussion

In the the following section the experimental results are dis-
cussed. We report the character error rate (CER) on the test
subset of the OGI kids’ speech corpus for each model as mean

and standard deviation over five training runs with different ran-
dom seeds for model initialization.

4.3.1. Splitting OGI kids’ corpus by prompt

As a preliminary study, we train the baseline model only on
child speech. Due to the relatively low variety in words, com-
pared to the variety in speakers of the OGI kid’s speech corpus
(see Section 4.1.2), we hypothesize that the model’s ability to
generalize over speakers will be much higher than its ability to
generalize to unseen words. This is confirmed by our results,
shown in Table 1, when comparing different strategies for split-
ting the data set into train, development and test subsets. When
splitting the data set, such that no speaker occurs in multiple
subsets, a low test CER of 7.81% is achieved. When instead
splitting, such that no prompts occur in multiple subsets, the
CER increases to a much worse 55.18%, which confirms our
hypothesis. We therefore chose the later splitting strategy for
all further experiments.

Table 1: Test CER (%) on OGI kids’ corpus, when training
without adult data and using different splitting strategies. Mean
and standard deviation are estimated over five training runs
with different random seeds.

Split strategy CER
mean std

Split by speaker 7.81 0.10
Split by prompt 55.18 0.48

4.3.2. Using age information and replacing GRL with adver-
sarial loss

When training the baseline with adult and child speech simulta-
neously (baseline in Table 2), the CER gets already reduced by
relative 10% compared to training only on child data. We then
add the domain discriminator network. We assess the effect of
using age information via the age labels instead of hard domain
labels for both AL and GRL. When using hard domain labels
we set the age label ai to zero for all children and to 1 for all
adults. The model using a GRL and hard labels increases per-
formance by relative 4% over the baseline, but the GRL model
does not significantly benefit from soft age labels. When instead
using the AL, performance gets increased by relative 6.5% over
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Table 2: Test CER (%) on OGI kids’ corpus when using age
information or only hard adult-child labels, both when training
with the AL or using a GRL. Mean and standard deviation are
estimated over five training runs with different random seeds.
The significance of the improvement over the baseline, esti-
mated using one-sided Welch’s t-test, is shown with * p < 0.05
and ** p < 0.01

Model CER CERR
mean std

Baseline 49.41 1.43 -
GRL Hard Label 47.37 1.01 4.13*
GRL Age 47.14 0.87 4.60**
AL Hard Label 46.17 0.78 6.56**
AL Age 44.34 1.06 10.25**

the baseline. The model trained with the AL also significantly
benefits from soft age labels, resulting in a relative improvement
of 10% over the baseline.

We believe the reason for the GRL model not being able to
leverage the age information is as follows: Adversarial multi-
task learning with a GRL is not designed for continuous domain
labels. Given hard domain labels, the sign of the gradient of
the discriminator loss is fixed for all samples from one domain.
The reversed gradient will always push the encoder network to
extract features more similar to the other domain. When in-
stead continuous domain labels exist, the sign of the gradient
depends on the discriminator output. When the discriminator
underestimates the age of a young child, the reversed gradient
will push the encoder to extract features that are more similar to
even younger children. The desired behaviour would be to push
the encoder to extract features more similar to older children
and adults.

The AL has another potential advantage over the usage of a
GRL. Since the AL does only depend on the output of the dis-
criminator network and not on a label, the speaker age does not
need to be known for all utterances. While this is not explored
in this work, it may simplify the usage of additional data in the
future.

4.3.3. f0-Normalization

We compare the adversarial age invariant training with f0-
Normalization from [15]. We chose f0-Normalization as a com-
parison over more widespread feature adaptation methods like
VTLN, because it has shown similar or better performance for
adapting differences between different age groups of the OGI
kids’ corpus, while being much easier to integrate into an end-
to-end system. The results are shown in Table 3.

f0-Normalization reduces the CER 4% relative to the base-
line, while the age invariant training (AL Age) results in 10%
decreased CER. When using f0-Normalization together with
the age invariant training, the best results are achieved with
more than 13% relative improvement over the baseline. The
age variant training appears to benefit from f0-Normalization
to a similar extend as the baseline model. This suggests, that
the age invariant training as implemented in this work, adapts
other differences between speech from different aged children
and adults than f0-Normalization does.

Table 3: Test CER (%) on OGI kids’ corpus and relative im-
provement over the Baseline (CERR) (%) when training with
f0-Normalization from [15], adversarial loss (AL), and when
combining both. Mean and standard deviation are estimated
over five training runs with different random seeds. The sig-
nificance of the improvement over the baseline, estimated us-
ing one-sided Welch’s t-test, is shown with * p < 0.05 and
** p < 0.01

Model CER CERR
mean std

Baseline 49.41 1.43 -
Baseline + f0 47.29 2.20 4.28
AL Age 44.34 1.06 10.25**
AL Age + f0 42.82 0.28 13.34**

5. Conclusions
In this paper we proposed a framework for age invariant training
of the acoustic model of end-to-end automatic speech recog-
nition systems to improve joint training on child and adult
speech, using adversarial multi-task learning. Instead of treat-
ing child and adult speech as only two domains, additional
performance gains were achieved, when utilizing information
about the speaker’s age. Applied to a simple TDNN acous-
tic model and the OGI kids’ corpus, the proposed framework
shows promising results of more than 10% relative improve-
ment over the baseline.

Our results further show, using the f0-normalization from
[15], that usage of adversarial multi-task learning should not
necessarily be regarded as a substitute for traditional feature
space adaptation methods, but that both should be used together
for best performance.

In this work a proof of concept using a simple model and
a small data set was given. In further work we want to apply
the proposed framework to more sophisticated models and use
additional data. Even though in this work the fully supervised
scenario was investigated, additional unlabeled data can be used
in a straightforward manner.
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