
Structuring Autoencoders

Marco Rudolph Bastian Wandt Bodo Rosenhahn
Leibniz Universität Hannover

{rudolph, wandt, rosenhahn}@tnt.uni-hannover.de

Abstract

In this paper we propose Structuring AutoEncoders
(SAE). SAEs are neural networks which learn a low dimen-
sional representation of data and are additionally enriched
with a desired structure in this low dimensional space.
While traditional Autoencoders have proven to structure
data naturally they fail to discover semantic structure that is
hard to recognize in the raw data. The SAE solves the prob-
lem by enhancing a traditional Autoencoder using weak su-
pervision to form a structured latent space.

In the experiments we demonstrate, that the structured
latent space allows for a much more efficient data represen-
tation for further tasks such as classification for sparsely
labeled data, an efficient choice of data to label, and morph-
ing between classes. To demonstrate the general applicabil-
ity of our method, we show experiments on the benchmark
image datasets MNIST, Fashion-MNIST, DeepFashion2 and
on a dataset of 3D human shapes.

1. Introduction and Related Work
Data structuring is widely used to analyze, visualize and

interpret information. A common approach is to employ
autoencoders [11] which try to solve this task by structur-
ing data in an unsupervised fashion. Unfortunately, they
tend to focus on the most dominant structures in the data
which not necessarily incorporate meaningful semantics.
In this paper we propose Structuring AutoEncoders (SAE)
which enhance traditional autoencoders with weak supervi-
sion. These SAEs can enforce a structure in the latent space
desired by a user and are able to separate the data accord-
ing to even subtle differences. The structured latent space
opens up a variety of applications:

1. Improving classification accuracy on datasets where
only a small number of data points is labeled.

2. Finding the most important unlabeled data points for
giving labeling recommendations.

3. An interpretable latent space for data visualization.

Figure 1. Latent spaces of the autoencoders for the 3D HumanPose
database. The colors are given by the gender, male and female.
Left: Confused latent space when using a traditional autoencoder.
Right: Clustered structure in latent space when using the SAE.

4. Morphing between properties that are hidden in the
data.

The focus of this work is to transfer data into an orga-
nized structure that reflects a meaningful representation. To
achieve this, it is necessary to uncover even subtle semantic
characteristics of data. As an enhancement of linear fac-
torization models [9], the idea of autoencoders as a tool to
naturally uncover structures has been part of research on
neural networks for decades [15, 3, 28]. They are com-
monly used to learn representative data codings and usu-
ally consist of a neural network having an encoder and a
decoder. The encoder maps the data points through one
or more hidden layers to a low dimensional latent space
from where the decoder reconstructs the input. However,
this representation is not necessarily meaningful in terms of
the underlying semantics and cannot discover well hidden
structures. There are other variants of Autoencoders which
enforce a specific distribution in the latent space, either by
a variational approach [12] or by applying a discriminator
network on the latent space known as Adversarial Autoen-
coders [20]. Other works focussed on getting disentangled
representations of data in the latent space [14, 7, 10, 1].
There are several other variants that find additional con-
straints on the latent variables, mostly for specific applica-
tions [6, 24, 18, 4, 17, 5]. However, analysis of hidden struc-
tures is rarely considered. Our approach solves this task by
improving traditional autoencoders with a weak supervision
using only a very small amount of additionally labeled data

1

which represents the desired formerly well-hidden seman-
tics. Furthermore, we propose a method to extend this small
set of labels efficiently by determining critical examples that
are most meaningful to improve classification. Comparing
common classification networks to our approach, they can
be interpreted as the omission of the decoder network.

As an example we consider the separation of male and
female 3D body shapes which are in different poses. The
obvious structure in the data is the pose of the body shapes
since the variation in pose is a lot stronger compared to vari-
ation in the gender regarding the reconstruction error. In
fact, passing the data through a traditional autoencoder it
will mix male and female data points as can be seen on the
left hand side of Fig. 1. To assist the autoencoder to separate
the data points into male and female we define distances be-
tween different classes. These distances shall be maintained
in the latent space while training the SAE. Following the ex-
ample we specify a distance of 1 between the male and fe-
male class. The distance metric is freely customizable to a
desired task. The right image of Fig. 1 shows a much better
organized latent space obtained by the SAE. Interestingly,
there is only a marginal increase of the reconstruction error
when using the SAE compared to standard autoencoders.
For ordering data with respect to the relative distance mea-
sures in this work Multidimensional Scaling (MDS) is ap-
plied [32]. Alternative approaches such as t-SNE, which
is based on a Stochastic Neighbor Embedding [26, 25] or
Uniform Manifold Approximation and Projection (UMAP)
[21] are conceivable. These methods can be used to visual-
ize the level of similarity of individual examples of a dataset
and can be seen as related ordination techniques which is
used in information visualization. To preserve desired dis-
tances in the latent space we use MDS in this work. By
applying MDS on sparsely known labels of the training set,
it allows to structure the data in such a fashion, that data
points with the same labels have a small distance in the la-
tent space, whereas data belonging to different labels are
enforced to keep a certain distance. This is formulated as
the structural loss in addition to the decoders reconstruction
error. A diagram of the proposed autoencoder training in-
cluding a structured latent space visualization and the used
losses is shown in Fig. 2.

We show experiments on the benchmark dataset MNIST
[16] which we randomly decompose into three classes. The
results underline the fact that the SAE efficiently separates
the latent space according to a freely selected structure that
is invisible the raw data. Moreover, using only a very sparse
set of data (6000 labeled samples) the SAE outperforms
comparable neural networks trained solely for the classifi-
cation task. These results are confirmed on the recent more
diverse dataset Fashion-MNIST [30] and our own dataset
of 3D meshes of human body shapes. A real-world applica-
tion is shown on the recently published DeepFashion2 [8]

Figure 2. Our Structuring AutoEncoder (SAE) projects data into a
structured latent space. It uses Multidimensional Scaling to calcu-
late the class centers in the latent space. By applying an additional
structural loss the SAE maintains distances between the classes
according to a desired metric. Losses are colored in blue.

dataset where our SAE outperforms comparable classifiers.
Additionally, we show that our guided labeling approach
only needs 600 training samples combined with the 100
most meaningful samples that are automatically detected to
achieve good classification results. This provides a tool to
significantly reduce labeling time and cost.

Summarizing, our contributions are:

� An autoencoder that structures data according to given
classes and preserves distances present in the label
space.

� A method to deal with sparsely labeled data while pre-
venting the overfitting of traditional approaches.

� Better classification performance than comparable
neural networks trained for classification using the
same amount of training data.

� Similar training performance (reconstruction loss)
with and without structured training.

� A technique to improve the labeling efficiency by de-
termining critical data points.

2. Structuring Autoencoder
We assume that the input data can be separated into sev-

eral classes which are not obvious in the data itself. These
classes are only known for a small fraction of the input data.
We further assume that the data can be projected to a latent
space that preserves the distances between the classes. As
a toy example we separate the Fashion-MNIST dataset [30]
into the three classes summer clothes (top, sandals, dress
and shirt), winter clothes (pullover, coat and ankle boot),
and all-year fashion (sneaker, trousers, bag). The left hand
side of Fig. 5 shows the latent space of this. Here, as an ex-
ample we define an equal distance between the classes. Ob-
viously, the season depending decomposition is not given

by the data itself. The following sections describe the pro-
posed autoencoder architecture and training. Algorithm 1
describes the steps for training the network.

Algorithm 1 Autoencoder training
X training samples
D distances
while no convergence do
Z = fenc(X) fproject X into latent spaceg
Z∗ = MDS(Z) fcalculate desired positionsg
ZZ+ = USV T fsingular value decompositiong
set all singular values � 0 to 1
R = US∗V T fcalculate ideal rotationg
~Z = RZ∗ ffinal positions in latent spaceg

train SAE with loss LSAE(x; ~z) and LAE(x;fae(x))
end while

2.1. Architecture and Loss Functions

Our method is not restricted to a specific autoencoder ar-
chitecture. That means every architecture can be applied,
for instance fully connected, (fully) convolutional, or ad-
versarial autoencoders. We define two loss functions. The
first loss

LAE(x;fae(x)) = kx� fae(x)k22; (1)

is the mean squared error (MSE) between the input x and
the output of the autoencoder fae(x) as it is commonly
used. With fenc(x) as the function of the encoder that
projects x to the latent space a structural loss is defined as

LS(fenc(x); ~z) = kfenc(x)� ~zk22: (2)

It is calculated by the MSE between the latent values
fenc(x) and the desired locations ~z in the latent space that
are calculated at each iteration. The estimation of these lo-
cations using Multidimensional Scaling is described later in
Sec. 2.3. This gives the combined loss

LSAE(x; ~z) =

LS(fenc(x); ~z) + (1�)LAE(x;fae(x)); (3)

with = [0; 1] as the balancing parameter between the two
losses. Note that = 0 corresponds to the traditional au-
toencoder training while a higher value of gives a higher
importance to the structural loss. In section 3.6 the influence
of is analyzed and its choice for experiments is explained.
For unlabeled data LSAE = LAE is considered since there
is no ~z defined.

2.2. Initialization

Following the toy example from above a distance matrix
D between the three classes is calculated where each row

and column marks a training sample and the entries are the
distances. Here, we can define an equal distance (e.g. of
1) between different classes. The intra class distance is 0.
Since the distances between the classes stay the same dur-
ing training the distance matrix only needs to be calculated
once.

2.3. Structuring the latent space

The autoencoder is trained iteratively. In every iteration
the data x is projected into the latent space by the encoder
which gives the latent variables

z = fenc(x): (4)

This is done for the complete training set. By stacking all z
vectors we obtain the matrix Z. To calculate the desired la-
tent positions ~Z we apply Multidimensional Scaling (MDS)
[13] to the distance matrix D that is defined in Section 2.2.
MDS is able to arrange data points in a space of an arbi-
trary dimension in a way that the given distances should be
preserved. The Shepard-Kruskal algorithm [13] is an iter-
ative method to find such an arrangement. After an initial-
ization the stress between the actual and the given distance
measures is minimized until a local minimum is found. In
contrast to manually setting the desired latent locations the
MDS can automatically adapt to the data and therefore to
the training process. This results in a target matrix of loca-
tions Z∗ in the latent space.

Since there is an infinite number of possible target loca-
tions and we want to compute locations close to Z the MDS
algorithm is initialized with them. To get the best possible
target locations an orthogonal alignment [22] is applied to
Z∗ to best fit Z. Naturally, MDS results in centralized data
points. Therefore, we only need to compute the ideal rota-
tion around the origin. Let P be a projection matrix that
projects Z∗ to Z by

Z = PZ∗: (5)

We assume that there is a Moore-Penrose-Inverse Z+ of Z∗

with Z∗Z+ = I , where I is the identity matrix. This states
true if there are more data points than latent dimensions,
which is always the case in a meaningful experimental set-
ting. The singular value decomposition of P ∗ = ZZ+

gives
P ∗ = USV T : (6)

A new matrix S∗ is defined by copying S and setting all
nonzero singular values to 1. Then the ideal rotation R can
be found by

R = US∗V T : (7)

The desired latent positions are calculated by

~Z = RZ∗: (8)

Figure 3. Visualization of the iteration steps. With each iteration the two classes are separated better in the latent space. The images show
the same two dimensions in every step for the 3D body shape dataset.

SAE
(ours)

AE

VAE

MNIST HumanPose
Fashion-
MNIST

AAE

Figure 4. The scatterplots show 2D projections of the latent space
when using different types of autoencoders. For each instance an
appropriate projection was chosen. Points of the same color repre-
sent samples from the same class. It can be clearly seen that only
a Structuring Autoencoder is able to separate the latent variables
well.

With these target locations the autoencoder is trained batch-
wise for a complete epoch. After the epoch the steps in
this section are repeated until convergence. The data in the
latent space during the training steps is visualized in Fig. 3.

3. Experiments
We show the performance of our algorithm in sev-

eral experiments using diverse datasets including images
and vector data. The evaluation is done on the bench-
mark datasets MNIST [16], the recently published fashion
datasets Fashion-MNIST [30] and DeepFashion2 [8], and
our own 3D body shape dataset created using SMPL [19]. It
is important to note, that we focus on artificially set classes.
That means we try to find clusters that are not evident or
barely visible in the original data, e.g. a season depending
decomposition of Fashion-MNIST. Furthermore, we show

summer

winter

all-year upper body clothes

others

Figure 5. Comparison of two projections of the latent space using
different decompositions of the data. Note that the distance of two
samples is highly influenced by the chosen decomposition so this
setting is a method to individually control data.

that the SAE generalizes very well if only a small subset of
the training data is used. Since we achieve a clear separa-
tion of the defined classes in the latent space after training
we can fit an optimal hyperplane between the classes using
Support Vector Machines [27]. This allows for the defini-
tion of a classification error considering the separation in the
latent space. We further use the term reconstruction error
as the root-mean-square error (RMSE) between the input
and output of the autoencoder. We only train on unaug-
mented data in all our experiments. This allows for a fair
performance comparison between different classifiers even
for data where no augmentation is possible, e.g. the 3D
body shape data. We are aware of the fact, that state-of-the-
art classification performance cannot be completely reached
without data augmentation. However, we want to empha-
size that the focus of the paper is on semantically structuring
the latent space of autoencoders and not on state-of-the-art
classification results on benchmark datasets. Therefore, we
use standard fully connected and convolutional neural net-
works for all experiments and compare against comparable
classification networks. This means the classification net-
work uses the same architecture as the encoder of the SAE
to be compared plus a fully connected output layer.

3.1. Datasets and Neural Networks

To show an example on a well-known benchmark dataset
we randomly divide MNIST into three classes A =
(0; 1; 9), B = (4; 6; 8), and C = (2; 3; 5; 7). As a
more realistic example we evaluate on the Fashion-MNIST
dataset which was published in 2017 to have a benchmark

