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Abstract

Vector quantization for entropy coding of image subbands is investigated. Rate-distortion curves
are computed with mean-square error as a distortion criterion. We show that full-search entropy-
constrained vector quantization of image subbands results in the best performance but is computa-
tionally expensive. Lattice quantizers yield a coding efficiency almost indistinguishable from optimum
full-search entropy-constrained VQ. Orthogonal lattice quantizers were found to perform almost as
well as lattice quantizers derived from dense sphere packings. We also show results for binary and
ternary tree-structured vector quantizers. A combination of k-D tree VQ and the Hadamard trans-
form was found to be particularly suitable for coding of baseband images. An optimum bit-allocation
rule is derived from a Lagrangian multiplier formulation. Coding results are shown for both still and

moving images.
I. Introduction

For forty years the field of image coding has been devoted to seeking efficient coding methods for
storage or transmission of digital images [1]. [2] [3] [4]. Crochiere, et al., introduced subband coding
in the context of speech coding in 1976 [5]. Subband coding has also been shown to be an efficient
technique for image coding [6]. Subband pyramids, which combine the ideas behind subband cod-
ing and pyramid coding [7], can more fully utilize the image correlation in low frequency subbands
[8]. The subband pyramid is reported as the most efficient decomposition among several subband
decompositions by [9]. The subband pyramid itself does not reduce the overall entropy, but splits an
image into a hierarchy of bandpass components. Each of these components has different statistical
characteristics, and by designing a quantizer for each subband optimally, quantized data entropy can

be drastically reduced without significant quality degradation.

Scalar quantization and independent encoding of the signal samples is computationally simple,
but statistical dependencies between samples cannot be removed. On the other hand, vector quanti-
zation can approach the rate-distortion limit as the vector dimensionality gets large [10] [11] [12] [13]

[14]. A practical code book generation algorithm for vector quantizers was first given by Linde, et al.,



in 1980 [15]. Their so-called LBG algorithm assumes fixed length encoding of the vector quantizer
output. Entropy constrained vector quantization (EC-VQ) aims at a minimization of the distortion
for a fixed entropy of the quantizer output rather than a fixed number of code vectors. [25] [26].
The LBG algorithm has been extended to incorporate the entropy constraint. Among known vector
quantizers, EC-VQ gives the best coding efficiency when followed by entropy coding. The LBG
training algorithm works iteratively, and there is the risk of convergence to a local minimum. The
resulting code book requires full-search in the quantization process and thus is associated with a very
large computational complexity. Several approaches have been suggested to reduce this complexity

by introducing structure into the code book.

Tree-structured code books can be used to accelerate both code book generation and quantiza-
tion, but they are usually slightly less efficient than full search schemes {16] [17] [18] [19]. Lattice
quantization, which is an extension of uniform scalar quantization to multiple dimensions, is another
approach to ease the computational complexity [20] [21] [22]. Lattice quantizers were conjectured to
yield minimum mean squared error at high bit rates [20]. By exploiting the structure inherent to a
lattice quantizer, the code book generation and the quantization process can be made-very fast [23]

[24].

To our knowledge, vector quantization for the encoding of images has only been systematically
investigated in the context of fixed length encoding, as reported e.g. in [12] [6]. In this paper, we
compare the performance of vector quantizers for baseband and subband images assuming‘ entropy
coding of the quantizer output. We measure rate-distortion curves for natural test images using
mean squared error as distortion criterion. In section 2, subband pyramid decomposition is briefly
reviewed and a new optimum bit allocation rule is derived. Section 3 reviews four kinds of vector
quantization (VQ) algorithms, namely full search VQ for fixed length coding, entropy-constrained
VQ, k-D tree-structured VQ, and lattice VQ. In section 4, an experimental comparison of these
vector quantizers is reported for mathematical model distributions, baseband images, subband still
images, and subband moving images. Finally, we present example coding results for still and moving

images.



II. Subband Decomposition of Images

A. Pyramid Subband Decomposition by Recursive Bandsplitting

For the simpleét possible subband decomposition, a signal is passed through a highpass filter
and a lowpass filter, and the outputs of these filters are subsampled by a.factor of two as depicted
in Fig. 1. For upsampling and reconstruction, again a lowpass and a highpass filter are used, and
their outputs are added to yield a reconstructed signal. If the filters are chosen in the right way, the

aliasing that is introduced by the 2:1 subsampling cancels out in the reconstruction process.

Quadrature mirror filters (QMF) are a particularly appealing possibility for two-band subband
decomposition [27]. The frequency responses of the highpass and the lowpass filter are mirror images
of each other. Identical highpass and lowpass filters are used for the analysis and the synthesis filter
banks. Most QMF’s reported in the literature have an even number of taps [28], but filters with
an odd number of taps are generally more suitable for image coding [29]. Throughout the following
experiments, we have used 9-tap filters with their coefficients listed in Table 1. The frequency
responses of the filters are shown in the Fig. 2. This QMF bank yields perfect aliasing cancellation,
but not quite perfect reconstruction. The remaining linear frequency distortion is less than -25 dB

as shown in Fig. 2.

A comment is in order concerning the use of our odd-length quadrature mirror filters. These
filters require that the subsampling points be staggered between the two subbands, i.e., the low band
is sampled at positions 0,2,4 ..., and the high-band is sampled at the positions 1,3,5, .... The
alternating sampling preserves the information more uniformly and gives better reconstruction than

even-length QMF’s that require coinciding sampling in both bands.

Among several possible types of subband decomposition schemes, we adopt the four-level sub-
band pyramid illustrated in Fig. 3. On each pyramid level, the low frequency band is divided into
four subbands by a concatenation of a horizontal and vertical 2:1 band splitting. The resulting four

subbands are horizontal high frequency band, vertical high frequency band, diagonal highs, and a



new low frequency band. As adjacent image samples have a large positive correlation, most of the
energy is concentrated in the low frequency band. The energy contained in the other subbands is
usually much smaller. The amplitude distribution of the lowest frequency subband is shown in Fig.
4. A typical amplitude distribution of a high frequency subband is shown in Fig. 5. The distribution
in Fig. 5 closely résembles a Laplacian distribution. The distributions of the other subbands also

have similar shapes to the Laplacian distribution, although their variance differs.
B. Optimum Bit Allocation

Fewer bits can be allocated to the high frequency subbands than to the low frequency subbands
as they have less variance, hence less information. How many bits for each subband is optimum?
Often, a rule-of-thumb rule is used which postulates equal mean-squared error in each band. The
number of bits allocated to each subband is proportional to the logarithm of its variance. If the
energy within a band is smaller than the desired mean-squared error value, the band is discarded.

This rule can be justified by a rate-distortion analysis of Gauss-Markov source models [30].

A better bit-allocation rule that makes fewer assumptions about the signal statistics is derived
as follows. Our goal is to minimize the overall mean squared error for a given overall bit-rate.

Mathematically, we write

min (z_j D;(R,-)> (1)

under the condition

i Ri < Rmam (2)

i=1
where D;(R;) and R; are the distortion and the rate for each subband, respectively. Ryaz is
a given total bit rate. D;(R;) is an operational distortion rate function for an individual subband
i, which will depend on the quantization and encoding scheme used for the subband. Note that

we assume independent encoding of the individual subbands, and thus the rates for the subbands



are combined additively added in (2). We also assume an additive superposition of the distortions
D;(R;) in (1). This additive superposition is valid for a mean-squared error measure in an orthogonal

subband decomposition, given that the individual D;(R;) are appropriately scaled.

If we additionally assume that the distortion rate functions D;(R;) are continuous and convex,

we caii find the optimum bit allocation by a Lagrange multiplier method.

min (J =Y DR+ Ai&) . (3)

i=1 =1
where J is the overall cost function, and ) is the Lagrange multiplier. Minimum overall distortion

for a given total rate is achieved when the first partial derivatives of the cost function vanish, i.e.,

aJ 9y Di(Ri) | O L Ri
5% = om T om ° *)
This condition yields
dDi(R;)
dR; A (5)

for all subbands i. Thus, optimum bit allocation corresponds to the points where the individ-
ual distortion rate curves D;(R;) have equal slope (In Economics, this condition is called “Pareto-

optimality”.). This bit allocation rule provides a strong motivation to measure distortion rate curves

for the individual subbands.

II1. Vector Quantization Algorithms

A. VQ for Fixed Length Coding

Vector quantizers map a multidimensional space into a finite or a countable set of reproduction
vectors. The set of reproduction vectors is the code book. Linde, Buzo, and Gray in 1980 generalized

the Lloyd algorithm for the design of nonuniform scalar quantizers to yield a code book for vector
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quantizers [15]. Their code book generation scheme is known as LBG algorithm, or generalized Lloyd
algorithm. The LBG algorithm yields a minimum distortion quantizer for a given number of repro-
duction vectors, thus the resulting code book is optimum for successive encoding with fixed code
word length. The algorithm starts with an initial set of vectors and then iterates to determine the
optimum code book. In the iteration, optimum reproduction vectors are computed for a given subdi-
vision of the vector space ( Assuming that we are using mean-squared error as a distortion criterion,
the minimum mean squared reproduction vector is the centroid of a given region). Then, a new
subdivision of the vector space is calculated that is optimum for the newly computed feproduction
vectors. Now, the first step is repeated, i.e., the set of reproduction vectors is optimized for the new
subdivision, and so on until convergence. Fig. 6 (b) illustrates an example of two-dimensional vector
space divided by LBG algorithm. Figure 6 (a) depicts the training vector space with its distribution

density contour map.

The code book resulting from the LBG training procedure is entirely unstructured, and the
quantization process requires a full search of the code book, i.e., the input vector has to be com-
pared to each code book entry in order to find the closest reproduction vector. The number of
operations necessary for this full search is large. Assuming again a mean squared error distortion
criterion, roughly M:x N times multiplications and additions per vector are required, where M is

the vector dimensionality and NV is size of code book. The decoding process is simply a table look-up.
B. Entropy-Constrained VQ

Further data compression can be achieved if the vector quantizer is followed by an entropy coder
that takes advantage of the statistics of the vector quantizer output. The LBG code book generation
as described above is not optimum for such a scheme, as it assumes fixed length coding. Recently, the
LBG algorithm has been extended for code book design under an entropy constraint [25]. Entropy-
constrained vector quantization (EC-VQ) minimizes distortion for a given variable length code word

assignment rather than a given code book size. Mathematically,

min (D) (6)



under the condition of

R < Rmam (7)
where, D, R, and R4, are average distortion, bit rate, and maximum allowable bit rate, respectively.

Similar to the optimum bit allocation problem above, a Lagrange multiplier formulation is used
to design the optimum code book: .

min (J = D + AR) (8)

where T is the cost function, X is the Lagrange multiplier which incorporates the bit rate constraint.

Given a training set consisting of N vectors, this expression can be rewritten as

=1

1 & 1Y
min J:—.ﬁ;pj-*-)\—ﬁzlj (9)
where p; and [; are the distortion and the code word length associated with the j-th training vector.

The entropy-constrained VQ code book design follows the rules of the LBG algorithm—the only
difference is in the subdivision of the vector space for a given set of reproduction vectors. When the
reproduction vectors are given, the above expression (9) is satisfied by clustering the training vectors
according to

min (p; + Alj) (10)

Note that any code word assignment rule can be incorporated into (9) and (10). In experiments

reported in section IV, we assume
N
l; = —log, (=L 11
J g2( N ( )
where n; is the relative frequency of occurrence of the j-th reproduction vector in the set of training
vectors. For a given subdivision of the input vector space (or the training set), reproduction vectors
are then optimized as for the fixed length version of the LBG algorithm. For a mean squared error

distortion criterion, the centroids of each cell are the best reproduction vectors. Again, the design

algorithm iterates until convergence.

For EC-VQ, the number of initial reproduction vectors should be sufficiently large because its

code book coincides to the LBG code book when A equals zero. Otherwise, the resulting code book



will not achieve the theoretical minimum distortion for a given rate [25]. Redundant vectors are

automatically eliminated in the iterative design process.

As with the LBG-designed code book for fixed length encoding, the entropy-constrained vec-
tor quantization process itself is computationally expensive, since it requires full search of the code
book to find the closest reproduction vector. Note that “closest reproduction vector” for entropy-
constrained VQ means “closest” in the sense of (10). The code word length is part of the cost
function. A reproduction vector with a short code word length may be preferred over another vector
with a longer code word length, even though the Euclidian distance to the second vector is shorter.
The first vector leaves more bits for future véctors to be encoded, and the overall mean squared error
is lower. Unlike the fixed code word length VQ, the vector space is not subdivided by hyperplanes
with EC-VQ. Rather, the boundaries between cells in EC-VQ are curved shown in Fig. 6 (c).

C. k-D Tree-Structured VQ

The weak point of full-search vector quantization algorithms is the number of computations re-
quired for the code book generation and especially for the quantization process itself. Tree-structured
vector quantization is a powerful alternative to accelerate both code book generation and encoding
speed. As tree-structured VQ encodes an input vector by tracing a binary (or n-ary) tree, the
computational complexity reduces the order of complexity from M N (for full search methods) to
Mlog,(N) . Among several tree-structured vector quantizers, we investigate the k-D tree algorithm
in this paper [16] [17] [18] [19]. The k-D tree is a binary tree. It is extremely fast because it considers
the distortion of only one vector component at each tree node, i.e. at each node, a single vector
component is compared to a threshold. The resulting subdivision of the input vector space is made
up of hyperplanes orthogonal to a coordinate axis. Because of this constraint, the performance of
a k-D tree VQ'is bound to be lower than an LBG-designed full search vector quantizer. k-D tree
vector quantizers for variable code word length can be designed by growing an unbalanced binary

tree where the depth of the tree is variable.

In the experiments reported in Section IV, the k-D tree is built by recursively splitting cells in



vector space along the coordinate which currently has the widest range. The range is the interval be-
tween the minimum value and maximum value actually occurring in training set. The split threshold
is the mid-point of this range, i.e. half way between minimum and maximum. This split criterion
was adopted as it yielded the best coding efficiency for subband image among the other criterions.
This method roughiy simulates an uniform vector quantization. Fig. 6 (d) shows a k-D tree built in
two-dimensional vector space. Finally, each cell is represented by a vector which is the centroid of

the cell.

k-D trees do not perform well for highly correlated data, such as baseband images. In a baseband
image, vectors made of neighboring pixels ciuster around a 45 degree diagonal in the vector space.
The k-D tree cannot divide the vector space in any way other than orthogonal to one of the axes. If
the ridge of the distribution is not along an axis (which is the case most of the time) performance is
poor. If we can rotate the vector space coordinate system to align one of the coordinate axes with
the vector distribution ridge, the performance will be greatly improved. A particularly simple way
to achieve such a rotation is a Hadamard transform [30]. It requires only additions, subtractions,
and shift operations, and fast transform algorithms are known. Other transforms, as for example
the Haar transform [30] or the Discrete Cosine transform [30] could be used as well. We denote the
concatenation of the a Hadamard transform and a k-D tree vector quantizer as Hadamard k-D tree

vector quantizer. An example of Hadamard k-D tree is illustrated in Fig. 6 (e).

Bandpass images resulting from a subband decomposition possess a much lower correlation, and
the rotation by a Hadamard transform is not necessary. The multidimensional probability density
function of subband images is usually sharply peaked around the zero-vector. The binary k-D tree
usually splits peak of the distribution if data are distributed symmetrically. Splitting a peak sac-
rifices coding efficiency because the new reproduction vectors after the split are still close to the
peak. Hence, average distortion does not decrease while the bit rate increases. We experimented
with a ternary k-D tree to overcome this problem. The ternary k-D tree divides a cell into three
equal-sized sub-cells along one of the vector coordinates. Consequently, a center peak of the former

cell is preserved in one of the sub-cells without split. Fig. 6 (f) shows a ternary tree.
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D. Lattice VQ

Assuming a smooth one-dimensional probability density function and a sufficiently fine quantizér,
it has been shown that the uniform scalar quantizer approaches the minimum mean squared quanti-
zation error for a given entropy [20]. It has been conjectured that this finding can be extended to mul-
tiple dimensions, and that lattice quantizers that correspond to the densest multidimensional sphere
packing would play the same role as the uniform quantizer in 1-D. For example, in 2-dimensional case,
it is well known that a hexagonal partitioning of the space yields a lower mean squared error than a
rectangular partitioning. The corresponding hexagonal lattice is called Aj-lattice. In 3-dimensional
space, the As-lattice is known to yield the best partitioning [20]. The regions in vector space with
the smallest Euclidean distance to a lattice point are called Voronoi regions, Dirichlet regions, or
nearest neighbor regions. For example, the Voronoi regions of an As-lattice have the shape of a
truncated octahedron. All input vectors of a Voronoi region are reproduced by a vector that is the
centroid of the region rather than by the corresponding lattice point itself. In higher dimensions,
lattices corresponding to densest sphere packings are currently known only in 8-D (the Eg-lattice)

and in 24-D (the Leech lattice) [22].

For several lattice quantizers, fast algorithms have been developed to find the lattice point closest
(in the mean squared sense) to an arbitrary vector. We have used vector quantizers based on the
lattices Aq, Dy, Eg, and the orthogonal lattices Z%, Z4, and Z® for the experiments in Section IV. In
Fig. 6 (g) and (h), A3 and Z? are shown. The quantizers and their fast algorithms are summarized

in the Appendix. More details can be found in [23] [24].

The size of a lattice VQ code book is in principle infinitely large. In practice, however, we limit
the range of the input vectors and the code book size becomes finite. Still, compared to the LBG
designed code books, our lattice code books are typically an order of magnitude larger at a given bit
rate. This size is an advantage with respect to picture quality, since quantizer overload never occurs
and even very unlikely input vectors can be represented well, although they require a large number

of bits. However, the large code book requires a lot of memory space. As a remedy to the memory
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problem, we adopted a hybrid code book method. In this method, probabilities and centroids for
Voronoi cells are measured and stored for a code book of feasible size, based on the training set. This
code book now contains the “most popular” code vectors. When an image that is not part of the
training set is encoded, lattice cells may be encountered without pre-measured probability and cen-
troid. For these cells the lattice point is used as a reproduction vector and a fixed length code word
is assigned. The length of this code word is sufficiently large to cover the entire range of lattice cells.
Although the total lattice space is huge when the vector dimensionality is large, the number of lattice
points used frequently are limited. Consequently, it suffices to only build an explicit code book for
the popular Voronoi regions. The code word length outside the explicit code book is long, but the fre-

quency of its occurrence is very small, so its effect on the average code word length is negligibly small.

IV. Experimental Comparison of Vector Quantizers

In this section, we experimentally compare the performances of the vector quantizers introduced
in the previous section for two source models, still images, and moving images. The quantizers com-
pared are the uniform memoryless scalar quantizer, LBG-designed full search VQ with fixed-length
coding, entropy-constrained VQ, k-D tree search VQ, Hadamard k-D tree VQ, ternary k-D tree VQ,
and several lattice vector quantizers. The mean squared error performance of these quantizers is
compared over a wide range of bit rates. Finally, we apply our results to form a still image coder

and a moving image coder.
A. Performance for Model Distributions

In order to obtain a general idea about the various vector quantizers, we have studied their per-
formance for two well-defined source models. The first model is a first order Gauss-Markov model
with a correlation coefficient » = 0.95. The correlation between adjacent samples in a baseband
image is high, and the Gauss-Markov model can be helpful in interpreting VQ results for baseband

images. The second model is a memoryless random variable with a Laplacian probability density

12



function corresponding roughly to the zeroth-order statistics found in bandpass or high frequency
subbands. The training set are the test data consisted of 65,536 samples each. Except for the full
search vector quantizer designed by the LBG algorithm with a fixed code word length constraint

(Section III. A), entropy was measured for all quantizers.
Gauss-Markov Model

Fig. 7 shows the performance of six quantizers for the first-order Gauss-Markov model with
correlation coefficient 7 = 0.95. The solid line is the Shannon Lower Bound (SLB) of the distortion

rate function. The SLB for a first-order Gauss-Markov model is
D(R) = 20Rlog;(2) — 10logy(1 — r?) (dB). (12)

where D and R are the SNR in dB and the bit rate in bpp, respectively. 7 is the correlation coefficient.

For highly correlated data, vector quantizers perform much better than the scalar quantizer
(SCALAR) because they take advantage of the correlation between pixels. All vector quantizers
shown in Fig. 7 work in eight-dimensional space. Among the vector quantizers, full-search algorithms
generally performed better than those with the structured code books for fast search. Interestingly,
entropy constrained full-search VQ (ECVQ8) does not perform significantly better th@n full-search
VQ with fixed length coding (LBGS8). The entropy-constrained quantizer design imp'roves perfor-
mance only for very peaky probability density functions (PDF’s), as we will see later on. For less
peaky PDF’s like Gaussians, the entropy constraint is not effective. In fact, if we follow the fixed
length full-search VQ (LBGS8) by entropy coding, the bit rate will not be significantly reduced since
all code words are roughly equally likely.

The k-D tree (KD8) performed about 1 dB worse than full search algorithms. As explained in
Section IILI.C, the k-D tree can only split the vector space along one of the coordinate axes, and
not along the distribution ridge of the highly correlated data. By aligning one of the coordinate
axes with the distribution ridge, the Hadamard k-D tree (HKD8) performs as well as the full-search

VQ’s at much lower computational complexity. At low bit rates, the HKD8 performs even slightly
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better than the full-search VQ’s at a much smaller computational cost. However, its performance
saturates/deteriorates at higher bit rates because of the insufficient quantity of the training images.
This problem also occurs for conventional k-D tree VQ. Surprisingly, the Eg-lattice VQ performs

even worse than the k-D tree in the range of bit rates shown in Fig. 7.

These experiments show that for a highly correlated Gauss-Markov source a Hadamard k-D tree
VQ is very attractive at low bit rates. Very little is gained by incorporating an entropy constraint

into the quantizer.
Memoryless Source with Laplacian Distribution

Fig. 8 shows the performance of various quantizers for a memoryless source with Laplacian PDF.

The solid line is Shannon lower bound (SLB)

D(R) = 20R10g1(2) — 101ogyo( =) (dB). (13)
The results are dramatically different from the first-order Gauss-Markov source results. The uniform
scalar quantizer (SCALAR) performed better than the tree-search vector quantizers such as k-D
tree (KD8), Hadamard k-D tree (HKD8), and the ternary k-D tree (Tri-KD8). In fact, the scalar
quantizer performance is close to the full-search vector quantizers. Of course, there is no coding gain
due to a statistical dependency between the vector components. Any gain over scalar quantization

is due to a better multi-dimensional packing of the vector quantizer cells.

The ternary k-D tree algorithm (Tri-KD8) performed relatively well at low bit rates, but its
advantage is soon lost as the bit rate increased. Among all quantizers, entropy-constrained VQ
performed best. The Eg-lattice VQ (E8-LTC) performed almost as well as the entropy-constrained
VQ (ECVQ8) at a much lower computational cost.

It is important to note that the memoryless Laplacian source and the highly-correlated Gauss-

Markov source lead to a very different ranking of the merits of the various quantization schemes.
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B. Direct Vector Quantization of Baseband Images

In this section, vector quantizers are compared for a natural test image (Lenna, 512 x 512 pixels;).
The image is quantized directly, without subband decomposition. A block ‘of 2 adjacent pixels in 4
successive lines formed an 8-D vector for quantization. The code book was made from a training set
consisting of four face images as shown in Fig. 9. Note that the test image Lenna is not contained

in the training set.

Fig. 10 compares the performances of the quantizers. It resembles curves obtained for the
Gauss-Markov model. As expected, vector quantization is greatly superior compared to scalar quan-
tization. Among the vector quantizers, EC-VQ showed the best performance. The FEg-lattice VQ,
the Hadamard k-D tree VQ, and the full-search fixed length VQ (LBGS8) follow closely. The con-
ventional k-D tree VQ performed up to 4dB worse to other vector quantizers, but the Hadamard
rotation greatly improved its coding efficiency as shown by the HKD8. Scalar quantization is worst
because it does not exploit the spatial correlation. The lattice quantizer performed better than it

did for the Gauss-Markov model.
C. Vector Quantization of Image Subbands

In order to improve coding efficiency further, one would have to make the vector dimensionality
larger. Large vector dimensionality unfortunately implies exploding code book and training set
sizes if we desire a meaningful results at high bit rate. A more feasible approach to improve the
coding efficiency is to combine vector quantizers with some other decorrelating method. We adopted
subband pyramid coding because of its high coding efficiency and the absence of block artifacts.

Specifically, we used the four level subband pyramid illustrated in the Fig. 3.

With each pyramid level, the image area decreases by a factor of 4. This implies that the size of
our training set for that particular pyramid level shrinks accordingly and becomes too small rapidly.

We could use a larger number of images in our training set to compensate this effect, but then
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we would have to process a lot more data for the high frequency pyramid levels also, where the
training set in principle was large enough. Instead of using more images in the training set, we use
a trick to extend our training set where needed. Consider the pyramid level n that has a quarfér
of the samples of pyramid level n — 1. First, we decompose the level n — 1 image into high band
and low band horizontally and vertically as usual. The resulting horizontal highs, vertical highs,
and diagonals on level n are arranged into vectors and entered into the training set. Now, we shift
the level n — 1 data by one sample horizontally, and we repeat the subband decomposition. The
one-sample shift corresponds to a half-sample shift after subsampling, and the resulting vectors are
sufficiently independent from the previous decomposition to extend the training set. The procedure
is repeated for a vertical one-sample-shift and a diagonal shift of (1,1). The resulting increase in
training set size exactly compensates for decrease due to subsampling in the pyramid, and a training

set size independent from the pyramid level results.

Figures 11 to 13 show typical distortion rate curves for selected subbands. We show mean-squared
error rather than SNR to ease a later application of the bit-allocation rule derived in Section II. B.
Fig. 11 depicts the performance on a horizontally high subband of the first pyramid level (HO). The
results correspond to the Laplacian distribution model discussed above. Binary tree methods like
k-D tree VQ, Hadamard k-D tree VQ, and the LBG-designed fixed-length VQ perform poorly, since
they tend to divide the distribution peak. The ternary k-D tree performs relatively well at low bit
rates only. Eg-lattice quantization (ES-LTC) performs well, almost as good as EC-VQ at low rates.
At higher rates, the Eg-lattice quantizer performs even better than EC-VQ. This result, which can
also been seen in some other figures in this paper, is actually quite typical although it might be
surprising initially. At the higher rates, the LBG-trained quantizer has too many degrees of freedom
and overadapts itself to the training set data. Consequently, its performance drops for data outside
of the training set. The lattice quantizer is much more constrained and consequently suffers from

this problem to a lesser extent.

In Fig. 11 we also included a Z2 lattice quantizer (UNIF8). The Z®-lattice is orthogonal and thus
completely separable, and its Voronoi regions are 8-D hypercubes. The subdivision of the 8-D vector

space is conveniently done by 8 independent scalar quantizers. Different from straightforward scalar
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quantization, however, the quantizer output is jointly encoded in 8-D, and the each 8-D Voronoi cell
has its individual reproduction vector. Surprisingly, the Z%-lattice performs close to the Eg-lattice
VQ, and is actually closer to the E8-LTC curve than to the conventional scalar quantization curve
with independent 1-D encoding and centroids (SCALAR) in Fig. 11. Most of the lattice VQ gain
over scalar quantizétion is due to joint encoding and joint centroids, while the denser sphere packing

property of an FEg-lattice seems to be less important.

Fig. 12 shows similar results for the vertical high subband for the second pyramid level (V1). We
show results for 4-D vector quantizers rather than for 8-D here. Higher-dimensional vector quantizers
perform better at low bit rate, but the numBer of degrees of freedom gets too large for high bit rates,
and performance deteriorates due to overtraining. In fact, at higher bit rates, we were not able to
train 8-D quantizers to outperform the corresponding 4-D quantizers. Note that with our subband
pyramid subband scheme, distortion is weighted heavier than bit rate at higher pyramid levels. For
the overall image, the mean squared error figures associated with the subbands simply add up, while
the contributions of the individual bit rates (in bits/sample) decrease in proportion to the number

of samples in the pyramid level.

Fig. 13 shows a comparison of 2-D quantizers for the lowest frequency subband on the fourth pyra-
mid level (L3). The result is as one would expect from the Gauss-Markov model 7 or the baseband
image curves 10. For the high bit rates that we are interested in for the highest level of a subband
pyramid, higher-dimensional vector quantizers did not perform as well as 2-D vector quantizers due
to overtraining. Entropy constrained VQ (ECVQ2) performs best but appears to be overtrained at
the very high rates. The A4, lattice quantizer (A2-LTC) is second and outperforms even EC-VQ at
the very high rates. k-D tree VQ (KD2), Hadamard k-D tree VQ (HKD2), LBG-designed fixed word
length VQ (LBG2), and the scalar quantizer (SCALAR) follow with lower performance.

D. A Still Image Coder

We used the distortion-rate curves discussed in the previous section to determine the optimum

bit allocation according to (5) in the subband pyramid. Each subband is quantized at a point on
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the distortion-rate curves of some fixed slope. Of course, the bit rate axes were scaled beforehand
according to the number of samples on the pyramid level. The best quantizer was selected individually
for each subband taking also into account the computational cost associated with the scheme. Mote
specifically, lattice _quantizers were chosen as the best quantizer for each subband. The Eg lattice
was selected for the first level of the pyramid, the Dy lattice for the second ‘level, and the A, lattice

for the third and the fourth level.

Fig. 14 shows the original test picture “Lenna”. Fig. 15 shows an encoded example, with a
bit rate of 0.136bpp and an SNR of 30.9 dB. SNR is measured relatively to the peak-to-peak range
of the video signal. The overall quality is \;ery good for a compression ratio of approximately 60:1
(starting with 8 bpp). Picture quality is slightly impaired by blur and jagged diagonal edges. For
the comparison with the direct vector quantization, an encoded Lenna with the entropy-constrained
8-dimensional vector quantizer is shown in Fig. 16. The bit rate is 0.137bpp and peak SNR was
19.2dB.

Fig. 17 illustrates the bit allocation among subbands and the contribution of each subband to the
overall distortion. Interestingly, the mean square error (MSE) contribution of the various subbands is
by no means equal. It ranges between MSE = 1.07 for subband L3 and MSE = 10.46 for subband HO0.
If we use the rule-of-thumb bit allocation rule of equal distortion in all subband, the total distortion
increases by 0.8dB at the same bit rate. We also encoded the image with orthogonal lattice quan-

tizers, and it was confirmed that these quantizers perform only slightly worse than the denser lattices.
E. Encoding of Moving Image

The results for still picture coding can be easily extended to moving images. One of the ap-
plications that we are interested in is the encoding of moving video at rates around 1 Mbit /s for
distribution on a medium the optical compact disc. Our strategy for moving image coding is slightly
different from the still image coding presented above in that we compute an optimized code book
for each %— second of the signal and store the code book as side information. Thus, the code book

information has to be included in the total bit rate. We used the test sequence Alley. The luminance
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signal of Alley was sampled at (480lines) X (640pizels/line), and the frame rate was 24 frames per
second. The sequence was encoded with a 3-dimensional subband coding scheme and orthogonal
lattice quantizers. We adopted an 8-point Discrete Cosine Transform (DCT) along the tempofdl
axis instead of a temporal subband decomposition with overlapping filter impulse responses. The
DCT can be regarded as a subband filter bank with short filter lengths.A Consequently, memory
requirement for the filtering process are relatively low, although the temporal band sepai‘ation is not

very good. The temporal subbands have equal bandwidth and do not form a pyramid.

Fig. 18 depicts the 3-dimensional subbal}d scheme for the moving image coding. The diagonally
high subbands were generally discarded before the quantization. The horizontal highs (LLH) and
vertical highs (LHL) were further subsampled by factor 2‘Verticaally or horizontally. These frequency
components usually have small energy and are less visible to the human eye. Spatial bandwidth of
temporally high subbands is reduced by half. According to this spatio-temporal subband scheme,
60 subbands have to be quantized separately. We evaluated full search LBG algorithms, entropy-
constrained VQ’s, orthogonal lattice quantizers, and k-D tree VQ’s of different dimensionality for
these image subbands. Among these quantizers, the orthogonal lattice VQ’s were chosen as the best
quantizer. In our coding system for moving image, as the code books are renewed every 8 frames,
small vector dimensionality yielded better results. The Z° lattice quantizer was chosen for subband
LLH, and Z? was chosen for the subbands LHL,LH, and HL. The vectors were aligned to image

pattern orientation of each subband. Z! was optimum for the other subbands.

Figs. 19 and 20 show the first frame of original and the encoded sequence, respectively. Sub-
jectively, the encoded sequence is almost indistinguishable from the original. The bit rate including
the code book was 0.146bpp, or 1.08Mbps at a peak SNR = 39.4dB. As the temporal correlation in
the moving image sequence is usually high, higher coding efficiency was achieved compared to the
still image. Fig. 21 depicts the peak SNR fluctuation as a function of frame number. The color
components of the sequence Alley were also encoded, requiring 82.1 kbps for a peak SNR of 41.1dB,

but they are not shown here.
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V. Conclusions

In this paper, optimization of vector quantization for entropy coding of subband images has
been investigated. Our comparison was based on mean squared error performance over a wide
range of bit rate. It included full-search entropy-constrained vector quantizers, lattice quantizer, and
tree-structured vector quantizers. We have experimented with source models, both with memory
and without memory, still images and moving images and gained several new experimental insights

useful for vector quantization of images.

Several vector quantizers were applied directly to a baseband image. Given the limited vector
dimensionality (= 8), coding efficiency was generally rather poor. Much better results were obtained
by combining VQ with a subband pyramid. For high frequency subbands, which have low spatial
correlation and a peaky distribution, it was shown that EC-VQ gave the best results, but is com-
putationally very expensive. We prefer lattice VQ which is almost as efficient and much cheaper.

Orthogonal lattices perform almost as well as lattices derived from densest sphere packings.

An optimum rule for bit allocation among the subbands has been derived, that concludes equal
slope of the individual distortion rate curves. We applied this rule to design a coder for still images
as well as a coder for moving images. Using lattice quantizers in the subband pyramid, Lenna was
encoded with a peak SNR = 30.9 dB at bit rate = 0.136 bpp. The image sequence Alley was encoded
with peak SNR = 39.4dB at 0.146 bpp.

In many situations, vector quantization optimized for variable length coding can improve per-
formance greatly over conventional vector quantizers designed for fixed length coding. It is a very
satisfying result that the simple and elegant lattice quantizers yield an almost optimum performance
when combined with a subband pyramid. The important aspect of vector quantizers for entropy cod-
ing of image subbands is not the exact subdivision of the multidimensional space. For that purpose
an orthogonal lattice seems sufficient. The major coding gains are due to joint encoding of several
samples and the use of individual reproduction vectors in each Voronoi region of a multidimensional

lattice.
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Appendix

A, lattice

An A, lattice is generated by the matrix

v=|" b (14)
ug -1 R
Any A, lattice point x is generated by the integer combination of the row vectors uy and us.
X = a1uy+azuy (15)

where aq and ag are arbitrary integers.

A fast A, lattice quantization algorithm is as follows:

Step 1: Scale input vector x by multiplying the scaling matrix M and fit the lattice points on integer

points.
L 0
x'= Mx=| P ) X (16)
-\-/-Sstep

where step is the quantization step size.
Step 2: Shift x’ by (—1,—3), then round both unshifted x’ and shifted x’ to integer.

f(x) = round(x’) ‘ (17)

f(x — -;—) = round (x' - (?12-, —;—)) (18)
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Step 3: Shift f(x — %) by (1,1), then re-scale boyh f(x) and shifted f(x — %) by multiplying the

matrix M1,

v =M [ix - 1)+ 53|

M1t =

vo(x) = M~H(x)

step
0

\/§step

(19)

(20)

(21)

Step 4: Compare yo(x) and y1(x) and choose one which has smaller distance d; to x as the closest

A, lattice point.

Dy lattice

D, lattice is generated by the following matrix.

uy
uz

usg

U4

D, lattice quantization algorithm is the following procedure.

Step 1: Scale input vector x by

Step 2: Round x’ to integer.

xl

1
V2

22

b

I = T ]

V2
=— XX
step

do = ||x — yo(x)l|

di = flx — y1(x)|l

oS O

—

f(x) = round(x")

= 2 == ==

(22)
(23)

(24)

(25)

(26)



Step 3: If the sum of vector components of f(x) is even, take the f(x) as the closest Dy lattice point

!

Y.

f(x) = (fl,fg,f3,f4) (27)
if S, fi = even,
y' = f(x) | (28)

Step 4: If not, re-round the component of x, which is the furthest from an integer, to the next

nearest integer, then take it as the closest Dy lattice point y'.

fmaz = (fi | max(le; ~ £i])) (29)
if (wma:c - fmaa:) Z 07
yl = (fla"'7fmax+ 1,---,f4) (30)
else,
y/ = (flr--,fmax" 1’ ""f4) (31)
Step 5: Re-scale y’ by
:it_egx / (32)

72

y is the closest D, lattice point.
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Eg lattice

Eg lattice is obtained by extended Hamming code of length 8. The generation matrix is

- - _ .
uy 20000000
us 02000000 .
us 00200000
u 1100 0 2 0000
v=] *|== (33)
us 2111101000
ug 01110100
uy 0 0111010
| us i 11111111
Ejg lattice quantization algorithm is the following.
Step 1: Scale input vector x by
, 1
x =—— XX (34)
step
Step 2: Round x’ both to the nearest integer and to the next nearest integer.
f(x) = round(x") (35)
fmas = (| man(las = £) (36)
lf (mmaa: - fmaa:) Z 07
g(X) = (fla ---afmax + 17 ---,fs) (37)
else,
g(X) = (fla---,fma.x" 1,...,f3) (38)
Step 3: Take f(x) or g(x), whichever has an even sum of components, as the lattice point yg.
if %, £ = even,
Yo = £(x) O (39)
else,
Yo = g(x) (40)
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Step 4: Shift x’ by

Step 5: Round (x' — %) to integer both the correct way and the wrong way.
1 1
flx—=)= d(x' - =
(x 2) round(x 2)

= 3) = (61, F o s i B B, )
fmaz = (fi | max(zi = fil))
if (Zmaz — fnaz) = 0,
g(x — %) = (B, o frome £ 1 ooy )
else,

1
g(X - .2—) = (fl, "'?fmax - 1’ ._.,fg) '

(41)

(42)

(43)

(44)
(45)

(46)

Step 6: Take f(x — %) or g(x — %—), whichever has an even sum of components, as the lattice point

yl(x - —%)

Step T: Shift yq(x — %) by

/—’ — o—
Y1 “'YI(X )+ 2a212,2’ 27272,2

1 (11111111)
2

Step 8: Choose y or y}, whichever is closer to x, as the closest lattice point y.
Step 9: Re-scale y’ by

y =step X y'

y is the closest Eg lattice point.

The orthogonal lattice Z™ is given by simply rounding the input vector to integers.
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Table 1: Example of 9-tap quadrature mirror filter coeflicients

coefficient LPF HPF

Co 0.5645751 0.5645751
C.1,Cy 0.2927051 | -0.2927051
C_9,Cy -0.05224239 | -0.05224239
C_3,C3 -0.04270508 | 0.04270508
C_y4,Cy 0.01995484 | 0.01995484
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List of Figure Captions

Fig.1: Subband decomposition and reconstruction.
Fig.2: Frequency response of 9-tap quadrature mirror filter bank.

Fig.3: 4-level Subband pyramid decomposition of image Lenna, each of the subbands has been nor-

malized.
Fig.4: Data distribution of the low frequency subband on the fourth pyramid level.
Fig.5: Data distribution of the horizontally high subband on the fourth pyramid level.

Fig.6: Tlustration of (a) 2-D vector space with distribution density contour map, (b) quantized by
full-search LBG V@, (c) quantized by entropy-constrained VQ, (d) quantized by k-D tree VQ, (e)
quantized by Hadamard k-D tree VQ, (f) quantized by ternary k-D tree VQ, (g) quantized by hexag-
onal lattice VQ, (h) quantized by orthogonal lattice VQ with reproduction vectors.

Fig.7: R(D) curves comparing uniform memoryless quantizer (SCALAR), LBG full search fixed
length VQ (LBGS), entropy-constrained VQ (ECVQ8), k-D tree VQ (KD8), Hadamard k-D tree VQ
(HKDS8), Eg-lattice VQ (E8-LTC), and Shannon lower bound of R(D) curve (SLB) for a first-order

Gauss-Markov source with correlation coeflicient r = 0.95.

Fig.8: R(D) curves comparing uniform memoryless quantizer (SCALAR), LBG full search fixed
length VQ (LBGS), entropy-constrained VQ (ECVQ8), k-D tree VQ (KD8), Hadamard k-D tree VQ
(HKDS), Tri-kD tree VQ (Tri-KD8), Es-lattice VQ (E8-LTC), and Shannon lower bound of R(D)

curve (SLB) for Laplacian distribution without memory.
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Fig.9: Training pictures.

Fig.10: R(D) curves comparing uniform memoryless quantizer (SCALAR), LBG full search fixed
length'VQ (LBGS), entropy-constrained VQ (ECVQS8), k-D tree VQ (KD8), Hadamard k-D tree vQ
(HKD8), and Eg-lattice VQ (E8-LTC) for 512 X 512 Lenna.

Fig.11: R(D) curves comparing uniform memoryless quantizer (SCALAR), LBG full search VQ
(LBGS), entropy-constrained VQ (ECVQ8), k-D tree VQ (KD8), Hadamard k-D tree VQ (HKDS),
tri-kD tree VQ (Tri-KD8), Z8-lattice VQ (UNIF8), and Fg-lattice VQ (E8-LTC) for the horizontally

high frequency subband on the first pyramid level (HO).

Fig.12: R(D) curves comparing uniform memoryless quantizer (SCALAR), LBG full search VQ
(LBG4), entropy-constrained VQ (ECVQ4), k-D tree VQ (KD4), Tri-kD tree VQ (Tri-KD4), Z4-
lattice VQ (UNIF4), and Dy-lattice VQ (D4-LTC) for the vertically high frequency subband on the
second pyramid level (V1).

Fig.13: Magnified R(D) curves comparing uniform memoryless quantizer (SCALAR), LBG full
search VQ (LBG2), entropy-constrained VQ (ECVQ2), k-D tree VQ (KD2), Hadamard k-D tree
VQ (HKD2), Ag-lattice VQ (A2-LTC), and Z*-lattice VQ (UNIF4) for the low frequency subband
on the fourth pyramid level (L3).

Fig.14: Lenna original 512 x 512 pixels, 8 bits/pixel.
Fig.15: Lenna coded by subband lattice quantizer at 0.136bpp, peak SNR = 30.909dB.

Fig.16: Lenna coded directly by entropy constrained vector quantizer without subband pyramid de-
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composition at 0.137bpp, peak SNR = 19.194dB.

Fig.17: Bit allocation among subbands over distortion contribution of each subband, bit rate is nor-

malized by the whole image size.

Fig.18: Spatio-temporal subband pyramid scheme for moving image, high frequency components are

optimally pruned.
Fig.19: Original first frame of Alley 480 X 640 pixels, 8 bits/pixel.

Fig.20: First frame of Alley encoded by spatio-temporal subband pyramid and orthogonal lattice
quantizers at 1.08Mbps, peak SNR = 39.4dB.

Fig.21: Peak SNR fluctuation of encoded Alley.3 sequences according to the frame number.
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(a) Distribution (b). LBG VQ © EC-VQ

(d) k-D tree VQ (¢) Hadamard () Tri-kD tree VQ
k-D tree VQ

(g) Hexagonal (h) Orthogonal
Lattice VQ Lattice VQ

Figure 6: Dlustration of (a) 2-D vector space with distribution density contour map, (b) quantized
by full-search LBG VQ, (c) quantized by entropy-constrained VQ, (d) quantized by k-D tree VQ,
(e) quantized by Hadamard k-D tree VQ, (f) quantized by ternary k-D tree VQ, (g) quantized by
hexagonal lattice VQ, (h) quantized by orthogonal lattice VQ with reproduction vectors.
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Figure 7: R(D) curves comparing uniform memoryless quantizer (SCALAR), LBG full search fixed
length coding (LBGS), entropy-constrained VQ (ECVQ8), k-D tree (KD8), Hadamard k-D tree
(HKDS8), Eg-lattice (E8-LTC), and Shannon’s lower bound of R(D) curve (SLB) for a first-order

Gauss-Markov source with correlation coefficient » = 0.95.
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Figure 8: R(D) curves comparing uniform memoryless quantizer (SCALAR), LBG full search fixed
length (LBG8), entropy-constrained VQ (ECVQS8), k-D tree (KD8), Hadamard k-D tree (HKDS),
Tri-kD tree (Tri-KD8), Eg-lattice (E8-LTC), and Shannon’s lower bound of R(D) curve (SLB) for
Laplacian distribution without memory.
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Figure 10: R(D) curves comparing uniform memoryless quantizer (SCALAR), LBG full search fixed
length (LBGS), entropy-constrained VQ (ECVQ8), k-D tree (KD8), Hadamard k-D tree (HKDS),
and FEg-lattice (E8-LTC) for 512 X 512 Lenna.
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Figure 11: R(D) curves comparing uniform memoryless quantizer (SCALAR), LBG full search
(LBGS), entropy-constrained VQ (ECVQ8), k-D tree (KD8), Hadamard k-D tree (HKD8), tri-kD
tree (Tri-KD8), Z8-lattice (UNIF8), and FEs-lattice (E8-LTC) for the horizontally high frequency
subband on the first pyramid level (HO).
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Figure 12: R(D) curves comparing uniform memoryless quantizer (SCALAR), LBG full search
(LBG4), entropy-constrained VQ (ECVQ4), k-D tree (KD4), Tri-kD tree (Tri-KD4), Z*-lattice
(UNIF4), and Dy-lattice (D4-LTC) for the vertically high frequency subband on the second pyramid
level (V1).
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Figure 13: Magnified R(D) curves comparing uniform memoryless quantizer (SCALAR), LBG full
search (LBG2), entropy-constrained VQ (ECVQ2), k-D tree (KD2), Hadamard k-D tree (HKD2),

Ag-lattice (A2-LTC), and Z*-lattice (UNIF4) for the low frequency subband on the fourth pyramid
level (L3).
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Figure 14: Lenna original 512 x 512, 8 bits/pixel.
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Figure 16: Lenna coded directly without subband pyramid decomposition by entropy constrained
vector quantizer at 0.137bpp, peak SNR = 19.194dB.
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Figure 17: Bit allocation among subbands over distortion contribution, bit rate is normalized by the
whole image size. 48
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Figure 18: Spatio-temporal subband scheme for moving image
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Figure 19: Original first frame of Alley 480 x 640 pixels, 8 bits/pixel.
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Figure 20: First frame of Alley encoded by subband orthogonal lattice quantizer at 1.08Mbps, peak
SNR = 39.4dB.
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Figure 21: Peak SNR fluctuation of encoded Alley.3 sequences according to the frame number.
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