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ABSTRACT

In geometry-aided light field compression, a geometry model is
used for disparity-compensated prediction of light field images
from already encoded light field images. This geometry model,
however, may have limited accuracy. We present an algorithm that
refines a geometry model to improve the over-all light field com-
pression efficiency. This algorithm uses an optical-flow technique
to explicitly minimize the disparity-compensated prediction error.
Results from experiments performed on both real and synthetic
data sets show bit-rate reductions of approximately 10% using the
improved geometry model over a silhouette-reconstructed geome-
try model.

1. INTRODUCTION

Image-based rendering has emerged as an important new alterna-
tive to traditional image synthesis techniques in computer graph-
ics. With image-based rendering, scenes can be rendered by sam-
pling previously acquired image data, instead of synthesizing them
from light and surface shading models and scene geometry. Light
field rendering [1, 2] is one such image-based technique that is
particularly useful for interactive applications.

A light field is a 4-D data set which can be parameterized as
a 2-D array of 2-D light field images. For photo-realistic quality,
a large number of high-resolution light field images is required,
resulting in extremely large data sets. For example, the light field
of Michelangelo’s statue of Night contains tens of thousands of
images and requires over 90 Gigabytes of storage for raw data [3].
Compression is therefore essential for light fields.

Currently, the most efficient techniques for light field com-
pression use disparity compensation, analogous to motion com-
pensation in video compression. In disparity compensation, im-
ages are predicted from previously encoded reference images. Dis-
parity or depth values are either specified for a block of pixels, or
inferred from a geometry model [4, S, 6].

In this paper, we consider disparity-compensated light field
compression using an explicit geometry model. A geometry model
can be an efficient method of specifying the depth values required
for disparity-compensated prediction. The geometry models used
may be of limited accuracy for several reasons. The model may be
generated from image data using error-prone computer vision tech-
niques. Even an accurate model must be represented digitally in a
finite number of bits, and therefore, some degree of approximation
is necessary. The result of this geometry inaccuracy is reduced
compression efficiency for the compression algorithm [7].

In this paper, we describe a method of refining the geome-
try model to reduce the disparity-compensated prediction error,

and improve compression efficiency. Our algorithm is similar to
the Sliding Textures approach [8, 9], differing in only a few de-
tails. One of the main contributions of this paper is to apply these
ideas to the problem of light field compression. In Section 2, we
review the basics of geometry-based disparity-compensated light
field compression. In Section 3, we present our method for geom-
etry refinement. We present our results in Section 4.

2. GEOMETRY-BASED DISPARITY-COMPENSATED
LIGHT FIELD COMPRESSION

Disparity compensation is used in most current light field com-
pression algorithms [4, 5, 6]. The underlying idea of disparity-
compensated prediction is that a pixel in a light field image can
be predicted from corresponding pixels in one or more other light
field images. This prediction requires a depth value for a given
pixel. In a light field, the recording geometry is known, which
means that by specifying the depth, it is possible to establish cor-
respondence between pixels in two different views. This pixel cor-
respondence allows for the prediction of pixels of one view from
another. We assume that the imaged surface in both views look
similar, which is true for Lambertian, unoccluded surfaces.

In a geometry-based prediction scheme, depth values are in-
ferred from an explicit geometry model by rendering the model.
The reference images that are used to predict a particular image
must be defined. We follow the hierarchical coding structure de-
scribed by Magnor and Girod [4]. Here, each image is predicted
from two to four reference images. The order in which images are
encoded is also defined, so that images are predicted from images
that are already encoded.

3. PROPOSED ALGORITHM FOR GEOMETRY
REFINEMENT

In this section we present an algorithm that modifies the geom-
etry model for better compression performance. We explain the
optical-flow-based shape refinement method, and the iterative reg-
ularized least-squares method used to find the solution.

3.1. Optical-flow-based equation

A light field image may be predicted from one or more reference
light field images that have been previously encoded, according to
the hierarchical structure discussed in the previous section. We call
the image and pixel to be predicted the farger image and pixel, and
the images and pixels from where they are predicted the reference
images and pixels. The intensity of a given target pixel is predicted
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from the corresponding pixel in a reference image. Any given tar-
get pixel corresponds to a specific 3-D point along the viewing ray
1 in 3-D space. If we allow this line 1 to be parameterized by the
depth ¢, we obtain the line equation, in world coordinates,

Lo (t)
&)= L) |- @
L(t)

Note that this line is a function of the intrinsic and extrinsic
camera parameters of the target view, as well as the pixel position
in the image. By projecting this line into the reference view, we
obtain a 2-D line e. This so-called epipolar line

0= 54 | @

also parameterized by the original depth parameter ¢, is a function
of the pixel position in the target image, and the camera parameters
of the target and reference images.

Specifying a depth value ¢ fixes the point in 3-D space as well
as in the reference view on the epipolar line. Thus, we obtain a
corresponding reference pixel for the target pixel. We assume that
the true value of ¢ will result in the same intensity for the corre-
sponding target and reference pixels. An error in the depth ¢ will
result in a prediction error, denoted by the difference in intensity
Al This is a function of the intensity value at the target pixel I
and at the reference pixel I,.(£) given by

AT =TI, — I(to) = In(t) — I+ (to) ©)

where g is the current (inaccurate) depth value, and ¢ is the correct
depth value that results in no prediction error.
If we assume the intensity gradient

e=[ %] @

to be locally constant over this region in the reference image, we
obtain the familiar optical flow equation

AT = g% (e(t) — e(to)) (%)

However, this equation only relates prediction error AT to the
depth parameter ¢ for a given pixel. We need to further relate this
to the parameters of the geometry model using the relation

t = h{p) (6

where p is the vector of geometry parameters and h is a nonlin-
ear multivariate function that maps the geometry parameters to the
depth for a given pixel.

We now describe the mapping function h for our problem. For
the triangle mesh geometry model that we use, the geometry pa-
rameters are the positions of each of the vertices in the model. In
addition, we restrict the movement of these vertices to one degree
of freedom, radially from the center of the model.

For a particular target pixel, the corresponding 3-D line 1 in-
tersects the geometry at exactly one triangle face. Therefore, the
depth parameter ¢ is determined by the three vertices that define
this triangle face. By characterizing this triangle as an infinite
plane defined by its three vertices, we obtain a differentiable func-
tion £ that describes the depth parameter ¢ in terms of the geom-
etry parameters p. Note that we assume that other vertices will

not affect this pixel, through occlusion for example, and that the
pixel will not move off this triangle. Both of these assumptions are
supported by the restriction that changes in the geometry parame-
ters will be small, enforced by regularization in the least-squares
solution.

Combining (5) and (6), we obtain

AT = g"(e(h(p)) — e(h(po))) M

where po denotes the current geometry configuration. Both e and
h are non-linear functions of the parameter vector p. We can lin-
earize this equation, and the resulting equation will be valid locally
around po. If
e(h(p)) = Cip + Cs, ®

then

e(h(p)) — e(h(po)) = C1Ap ©
where Ap = p — pg and C} is a matrix of size 2 x N, with N as
the number of geometry parameters.

Substituting (9) into (7), we obtain the following equation

g7 (C1Ap) m AT (10

for each pixel and a corresponding reference view.

3.2. Least-Squares Solution

This equation may be derived for all the pixels in the light field
that are to be predicted, and can be combined to form the matrix
equation
AAp = b an
where
(g7 Cr)V
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Because our linearized problem and our mapping function h

are only valid for small Ap, we must include regularization into
the solution of our problem. This gives us the equation

[S]Apz[g] (14)

where X is the regularization constant. A larger value for A means
that the solution Ap will be smaller, and the problem will be more
numerically stable. When X is too large, however, it takes many
iterations to converge to the solution, In our experiments, the value
for A is selected empirically.

This linearized problem can be solved using the least-squares
approach. Since an equation is formed for each pixel predicted
from a reference view, the number of rows of A can be large. In
any particular equation, only three parameters are specified, there-
fore A is also sparse. We use the LSQR method [10], which is
well-suited to large, sparse problems, in our implementation.

Once we obtain a new geometry model from the solution, we
can again linearize the equations about the new operating point,
and solve for the new change in geometry parameters. We can
iteratively perform these two steps until we converge to the best
geometry model.
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4. RESULTS

Our experiments use both real and synthetic light field data sets.
An initial approximate geometry model is created using the silhou-
ette information from the light field image data. This silhouette-
reconstructed geometry model is refined using the technique de-
scribed in this paper to obtain the improved geometry model. For
the synthetic light fields, we also have the true geometry models,
which can serve as a useful reference point. We encode the light
fields using each of these geometry models, and compare their rel-
ative rate-PSNR performance. The light field coder is described
next.

4.1. Light Field Coder

The light field coder in our work uses block-based disparity-
compensation both without and with an explicit geometry model
[4, 5]. All images are divided up into 8 x 8 blocks. Each block is
encoded in one of several modes: the INTRA mode, where DCT-
based image compression is used for the block; the GEO mode,
where an explicit geometry model is used to predict the block from
reference images; the STD (standard) mode where a depth value
is specified to predict the block from reference images; and the
COPY mode, where a block from the same image location is sim-
ply copied from the reference image. For the STD mode, the depth
values are quantized such that they correspond to approximately
integer-pixel accuracy in the image plane. In the GEO and STD
modes, a DCT-based residual encoder is used on the prediction er-
ror. Mode selection is based on a rate-distortion Lagrangian cost
function

J=D+ AR 15)

where D is the sum-squared-error distortion of the block image,
and R is the rate in bits for the block. The mode with the small-
est Lagrangian cost is chosen. A rate-PSNR curve is obtained by
varying the image quality, using the quantization parameter ) in
the DCT intra and residual coders. The Lagrangian multiplier Aas
that is used to trade off rate versus distortion is adjusted according
to the quantization parameter using the following equation com-
monly used in video compression, [11]

Aar = 0.85Q°. (16)

4.2. Experiments

Four data sets were used in our experiments. The first two, Star
and Cube, are synthetic light fields, each with 26 images of reso-
fution 256 x 256. The last two, Garfield29 and Garfield288, are
light fields recorded from a real-world object, the same plush toy.
Garfield29 has 29 images, each of resolution 384 x 288, covering
the frontal region of the object, while Garfield288 has 288 images,
each of resolution 192 x 144 covering the entire hemi-sphere of
Views.

For each of the data sets, we derive a geometry model that is
consistent with the silhouette from each view. We begin with a
642-vertex subdivided icosahedron model that is larger than the
object. In each view, for each vertex, if a vertex lies outside of the
silhouette, we move it radially towards a center point so that it lies
on the silhouette border. We thereby obtain a 642-vertex object
that matches the silhouette in all views.

For each of the four light fields, we refine this silhouette-
reconstructed geometry object to obtain an improved geometry ob-
ject. Typically, we use anywhere from 250 to 1000 iterations and

a regularization constant A\ = 10'®, Both of these quantities are
determined empirically based on the results.

Figure 1 shows the results of our algorithm for the Star light
field. Figure 1(a) shows the true geometry, Figure 1(b) shows the
silhouette-reconstructed geometry, and Figure 1(c) shows the re-
fined geometry. Figure 2 illustrates the geometry results for the
real-world Garfield29 light field. Figure 2(a) shows only face of
the object from one image of the light field. Figure 2(b) shows
the silhouette-reconstructed geometry, and Figure 2(c) shows the
refined geometry.

(a) True Geo.  (b) Silhouette Geo. (c) Improved Geo.

Fig. 1. Geometry models for the Star light field. The near-exact
constrained geometry (not pictured) is visually identical to the true
geometry.

(a) Light field image (b) Silhouette Geo. (c) Improved Geo.

Fig. 2. Magnified portion of light field image and geometry models
for the Garfield29 light field.

For all of the light field data sets, we compare the efficiency of
our light field coder using the silhouette-reconstructed geometry
versus the improved geometry. For the two synthetic light fields,
we can compare with the results of the true geometry model as
well. Our algorithm constrains the set of possible improved ge-
ometry outcomes, since it uses only 642 vertices and constrains
the positions of these vertices to be in the same directions as the
original subdivided icosahedron vertices. To understand the possi-
ble effect of these constraints, we create another geometry model
that is subject to these constraints, but fit as close as possible to
the exact geometry model. We call this our near-exact constrained
geometry. This geometry model represents the best possible ge-
ometry result under the constraints that we have placed on the al-
gorithm,

Figures 3 and 4 show the Rate-PSNR curves using the various
geometry models for the Star light field and the Garfield29 light
field, respectively. The bit-rate for the geometry models is not
included. Since we have a regular icosahedron arrangement of
vertices, where only the 642 vertex radii must be specified, this
bit-rate will be negligible compared to the overall bit-rate for the
light field. The PSNR is measured over the entire image.

Due to space considerations, we do not show the curves for the
other data sets. In all cases, we see a bit-rate reduction of approxi-
mately 10% using the improved geometry instead of the silhouette-
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reconstructed geometry. This corresponds to an increase of ap-
proximately 1 dB in PSNR. The results for the synthetic data sets
indicate that there still exists a large performance gap between
the improved geometry and the exact geometry. The results for
the near-exact constrained geometry show, however, that only an-
other 10% is possible using our constrained arrangement. In other
words, our improved geometry realizes 50% of the gain possible
under our constrained arrangement.

Star Light Field
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Fig. 3. Rate-PSNR for Star Light Field. We see a 10% bit-rate re-
duction using the improved geometry over the original silhouette-
reconstructed geometry. The near-exact constrained geometry
shows us the best possible result for our constrained arrangement.
There is still a large performance gap from the exact geometry re-
sults.
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Fig. 4. Rate-PSNR for Garfield29 Light Field. We see a 10%
bit-rate reduction using the improved geometry over the original
silhouette-reconstructed geometry for this real-world light field.

5. CONCLUSIONS

We have presented an algorithm to automatically refine the ge-
ometry model used for disparity-compensated light field com-
pression. This improved geometry model reduces the disparity-
compensation prediction error and improves the compression ef-
ficiency. Our experiments show bit-rate savings of approxi-
mately 10% using the refined geometry model over the silhouette-
reconstructed geometry model. These experiments were per-
formed on both real and synthetic light field data sets,

Results from the synthetic data sets indicate that the algorithm
may be improved significantly by relaxing some of the geometric
constraints in the algorithm,
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