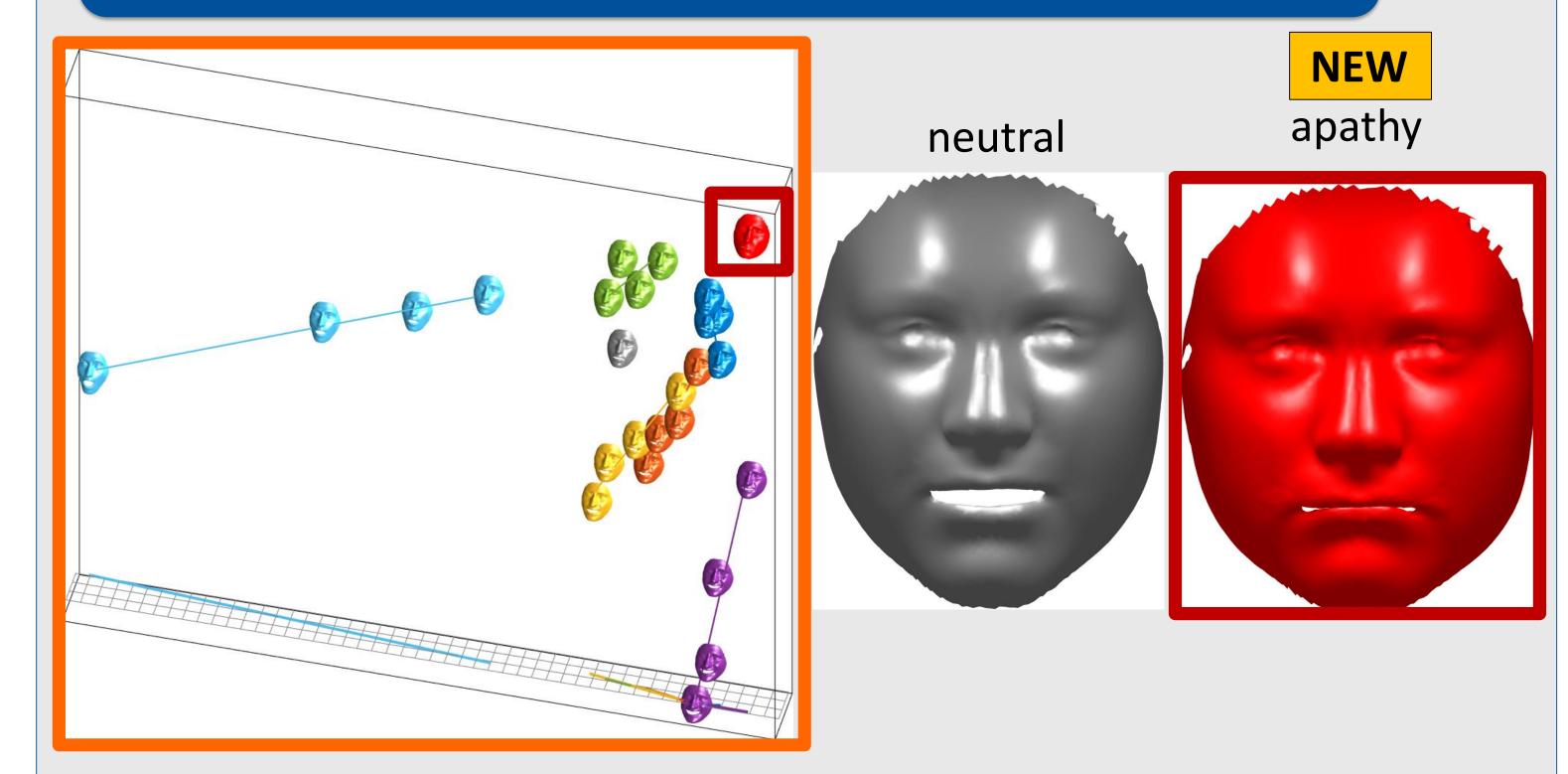
Apathy is the Root of all Expressions Stella Grasshof¹ • Hanno Ackermann¹ • Sami S. Brandt² • Jörn Ostermann¹ ¹Leibniz Universität Hannover, Germany • ²University Copenhagen, Denmark

HOSVD-based Face Models

- 3D face scan database with sparse correpondences [15]
- Compute full correspondences [16] 2.
- Arrange into tensor and subtract mean shape

$$\mathcal{T} = \mathcal{T}_{\text{orig}} - \mathcal{T}_0 \in \mathbb{R}^{3N \times P \times P}$$


Compute HOSVD 4.

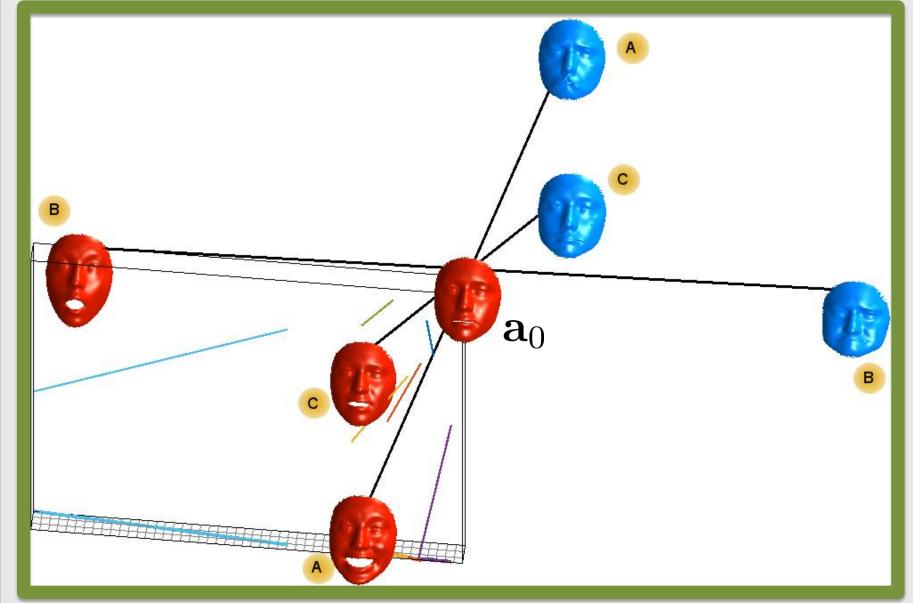
 $\mathcal{T} \approx \widehat{\mathcal{T}} = \mathcal{S} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{U}^{(3)}$

3D shape represented as sum of mean \mathbf{m} and mean-free shape 5. $\widehat{\mathbf{s}}^{3D} = \mathbf{m} + \widehat{\mathbf{v}} \in \mathbb{R}^{3N}$

Mean-free shape $\widehat{\mathbf{v}}$ can be described using different models.

Substructure of Expression Space

1. Model: Baseline Model $\widehat{\mathbf{v}}\left(\mathbf{u}_{2},\mathbf{u}_{3}\right) = \mathcal{S} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{u}_{2}^{\mathrm{T}} \times_{3} \mathbf{u}_{3}^{\mathrm{T}}, \quad \mathbf{u}_{2} \in \mathbb{R}^{L_{2}}, \ \mathbf{u}_{3} \in \mathbb{R}^{L_{3}}$

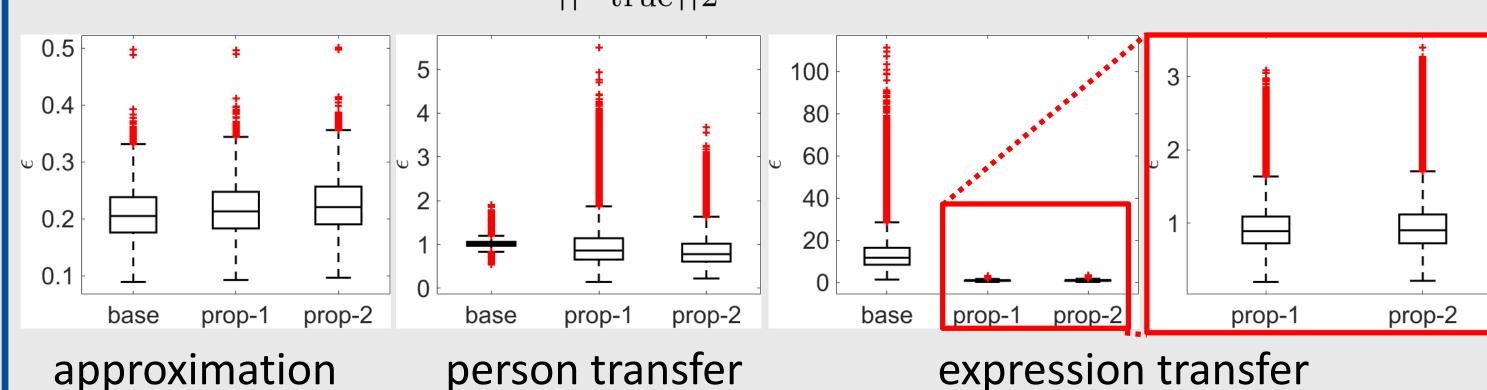

2. Model: Substructure-aware Model (proposed-1) $\widehat{\mathbf{v}}\left(\mathbf{p}_{2},\mathbf{p}_{3}\right) = \mathcal{S} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{p}_{2}^{\mathrm{T}} \mathbf{U}^{(2)} \times_{3} \mathbf{p}_{3}^{\mathrm{T}} \mathbf{U}^{(3)}, \quad \mathbf{p}_{2} \in \mathbb{R}^{P}, \ \mathbf{p}_{3} \in \mathbb{R}^{E}$

3. Model: ICA-based Model (proposed-2) $\widehat{\mathbf{v}}\left(\mathbf{p}_{2},\mathbf{b}_{3}\right) = \mathcal{S} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{p}_{2}^{\mathrm{T}} \mathbf{U}^{(2)} \times_{3} \left(\mathbf{b}_{3}^{\mathrm{T}}\mathbf{B} + \mathbf{a}_{0}^{\mathrm{T}}\right), \quad \mathbf{p}_{2} \in \mathbb{R}^{P}, \ \mathbf{b}_{3} \in \mathbb{R}^{3}$

	Model 1	Model 2	Model 3
Takes use of person and expression space $\mathbf{U}^{(k)}$	×	\checkmark	\checkmark
Canonical basis of parameter vectors	×	\checkmark	\checkmark
Incorporate low-dimensional substructure $\mathbf{U}^{(3)}$	×	×	\checkmark
Robust person and expression transfer	×	\checkmark	\checkmark
Number of expression parameters	$L_3 \le E$	E = 25	3

First three dimensions of expression space $\mathbf{U}^{(3)}$

- Each emotion displayed in one color approximates one line.
- Expressions form a planar substructure.
- Lines intersect in new *"apathetic"* expression (not part of database).
- Apathy as natural origin of all expressions.


Reduced expression space: Compute ICA on apathycentred expression space to receive 3 projection pursuit directions and thereby new basis expressions. Note that these lie in the plane, but partly outside the training data (blue).

Applications

Person and Expression Transfer

How robust can person and expression transfer be done?

- Exclude expression (or person) from data tensor
- Re-estimate model 2.
- Estimate model parameters for remaining faces for each model 3. $\min ||\widehat{\mathbf{v}} - \mathbf{v}||_{2}^{2} + \lambda_{1} ||\mathbf{p}_{2}||_{2}^{2} + \lambda_{2} ||\mathbf{p}_{2}^{\mathrm{T}}\mathbf{1} - 1||_{2}^{2}$ $+ \lambda_3 ||\mathbf{p}_3||_2^2 + \lambda_4 ||\mathbf{p}_3^{\mathrm{T}}\mathbf{1} - 1||_2^2$
- Change expression (or person) parameters to known values 4. Compute error $\epsilon = \frac{||\widehat{\mathbf{v}} - \mathbf{v}_{\text{true}}||_2}{||\mathbf{v}_{\text{true}}||_2}$ 5.

Synthesis of Expression Trajectories

approximation

expression transfer

Emotion Classification

- Exclude person from data tensor 1.
- Re-estimate model 2.
- Estimate parameters for person and 3. expression excluded persons
- Assign one of the 7 emotions based on k-4. *nearest-centroid (kNC)* classification

Classification Rate: Model 1 : 15% Model 3 : 60%

