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In the area of industrial quality inspection often only a very limited num-
ber of X-ray projections is available for the tomographic reconstruction. This
is due to time- and cost reasons. Partly the aspect ratio of the components
prevents a check from all sides. Conventional tomographic algorithms are
not applicable in such cases. In this contribution a new approach for three-
dimensional binary image reconstruction from a limited number of X-ray pro-
jections, applied to the reconstruction of casting defect, is presented. The
reconstruction is carried out in a two step procedure. In a preprocessing step
the reconstruction area is limited to the regions of interest around the de-
fects. In these regions an iterative tomographic reconstruction procedure is
employed. For the regularization of the tomographic reconstruction problem
the maximum entropy principle is used in connection with a procedure for the
binarisation of the reconstruction results. The reconstruction is carried out
independently of restricting a priori assumptions over the shape of the defects.

1 Introduction

The further spreading of tomographic testing methods within the area of industrial quality
inspection is limited at present by different factors of influence. Traditional tomographic
systems are too complex and expensive for several applications. The necessary inspection
time, using projections all around the sample, is much too long [1]. Frequently also the
aspect ratio of the components prevents the radiographic testing from all sides necessary
for the reconstruction. Therefore there is large interest in tomographic approaches, which
operate on the basis of simple radiographs (reduction of the hardware expenditure) and
which enable a reconstruction using only a few radiographs. In such cases, the tomo-
graphic reconstruction problem is strongly underdetermined and inconsistently due to
different error influences (calibration error, noise), conventional tomographic algorithms
(filtered backprojection, transformation methods) are not suitable. A priori information
about the object under investigation has to be used together with a regularization ap-
proach in order to receive a unique solution.



The reconstruction of casting defects is a special application of the reconstruction of
a default region (e.g. air) in an otherwise homogeneous object. Therefore the image
reconstruction problem becomes the estimation of binary objects. In the literature dif-
ferent approaches are suggested. Several approaches are based on a description of the
objects under investigation by parameterized functions, e.g. [2], [3]. Due to that vari-
ety of possible casting defects, however, model-based approaches are unsuitable for the
reconstruction of casting defects, or at least only suitable for a strongly limited class of
defects. Other approaches are based on modelling the image as a binary Markov random
field (MRF), e.g. [4]. The reconstruction consists of estimating the whole voxels of an
object minimizing an error function depending on the measured projections and on the
a priori choice of the image modelling assumptions. The main difficulties using such ap-
proaches are to achieve a reasonable fast and accurate minimization considering the very
large number of unknowns.

Following a two-stage procedure for the three-dimensional reconstruction of casting
defects from few radiographs is presented, which is based on the knowledge of the material
parameters. This approach uses no special a priori assumption over the shape of the object
under investigation. First, the complexity of the reconstruction problem is reduced by
a limitation of the reconstruction to regions of interest around the defects. The defect
areas are segmented and the extensions of the defects in beam directions are calculated
from the measured data. In a second step the defects are reconstructed with an iterative
tomographic procedure. Regularization of the reconstruction problem is achieved on the
basis of the maximum entropy principle in connection with an iterative procedure for the
binarisation of the reconstruction results. The basic idea of this approach is to use the
maximum entropy solution as a distorted version of the true object and to impose the
binary constrain in a second process, instead of imposing the binary constrain directly to
the data. To improve the solution we iterate between the maximum entropy reconstruction
and the segmentation process. Such an approach is computationally much less expensive
than the direct estimation of the binary object from its projections.

2 Preprocessing
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Figure 1: Preprocessing

The preprocessing is used to reduce the complexity of the reconstruction problem by
restricting the reconstruction area to regions of interest around the defects. In figure 1 the



principle of the preprocessing procedure is shown. The measured data are converted into
material extensions in beam direction considering the known material parameters of the
casting material (linearization). The defect areas are segmented (segmentation) and the
material extension within the defect areas are extrapolated from the surrounding material
expansions. Extrapolated and measured material extensions are compared within defect
areas and the defect extensions are calculated (background compensation), compare [5].
The estimated defect extensions are used iteratively for an improvement of segmentation
and background compensation.

3 Tomographic Reconstruction

The three-dimensional reconstruction of the defects is carried out on the basis of the
preprocessing results. The object area is divided into discrete voxels and the projection of
the individual voxels into the different radiographs is described with the help of projection
matrix A (1).

P=Ax (1)

The data vector p contains the N pixel values of the different radiographs, in our
case the defect extensions in beam direction calculated in the preprocessing step. The
unknown vector fi represents the M material values of the different voxels. Since the
defect extensions in beam direction are used as input data, the material values of the
voxels are limited to the value unity for a voxel, that belongs to a defect and the value
zero for voxels outside the defect areas. The projection matrix A represents the projection
characteristics of the accommodation system for the different radiographs. The matrix
value a;; corresponds to the influence of the i.th voxel on the j.th projection.

Using only few radiographs the set of equations (1) is underdetermined and at the same
time inconsistent due to different error influences in the input data. Error influences are
in particular errors in preprocessing, calibration errors both in the densiometric and in the
geometrical calibration of the accommodation system as well as different noise sources.
In general, the solution of such a problem can be defined as the minimizer of a compound
criterion.

E = ||Axji—pl]* + B * E(f) (2)

Er(ji) can be used to impose different regularization constrains on the solution, e.g.
smoothness, binary constrains or assumptions about the shape of an object. [ is the
regularization factor controlling the influence of the regularization constrains. 3 is chosen
according to the confidence in the measured data.

In our approach, we first calculate a smooth solution using the maximum entropy
principle and impose the binary constrain in a second step, instead of imposing the binary
constrain directly.



3.1 Maximum Entropy Principle

The maximum entropy principle is a criterion often used in different ranges of application
for the determination of the solution of a underdetermined and inconsistent set of equa-
tions, e.g. [6], [7]. Entropy is a measure for the information content of the solution. In the
sense of the maximum entropy principle that solution is optimal, which has the maximum
entropy and thus the minimum information content of all possible solutions (3). The most
interesting property of the maximum entropy solution is that it is maximally indefinite
regarding to not measured projections, i.e. only such structures are reconstructed, which
come out unique from the measured data.

The reconstructed values are not limited to zero or unity. The maximum entropy
solution can be interpreted as a probability distribution, which indicates how probable a
voxels belongs to the defect. The larger the value of a voxel is, the more probable it is
that the voxel belongs to the defect.

Maximize

M-1

Entropy = — > i *In (u;) (3)
i=0

according to
p=Ax[;
0<=p; <=1,Vie{0,M -1}

For the calculation of the solution different procedures are suggested in the literature. Own
investigations [8] as well as the results of Subbarao [9] show that the MART algorithm
supplies the best results for our application. The MART algorithm is based on an iterative
adjustment of the reconstruction data to the measured data by multiplicative corrections.
We found out that the basic MART algorithm can be improved using some additional
steps according to the following procedure.

1. Start with a strictly positive vector ji°

2. Calculate for all pixels p; the actual projection:

Dj = D Gy * i (4)
k

3. Calculate for all voxels i and all pixels j the new voxel values:

4. Update all voxels according

new __

i _{1 if pt>1



5. Update all voxel i every k.th iteration

new

pie? = median (') (7)
6. Repeat steps 4 to 7 until convergence

The first steps contain the basic MART algorithm. Depending on the noise properties
of the data a small relaxation factor A between 0.01 and 0.1 is selected in order to guarantee
a stable convergence of the procedures. Step 6 imposes the material constrains on the
reconstruction. Finally, the repeated median filtering of the intermediate results leads
to a clear improvement of the convergence behavior [8]. The noise properties of the
measured data used for the choice of an adequate relaxation factor are estimated during
the preprocessing procedure.

3.2 Binary Constrains
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Figure 2: Overview over the reconstruction procedure

To impose the binary constrain the maximum entropy reconstruction is linked with
an extended use of the a priori knowledge of the material parameters in a binarisation
process. The flow of the developed reconstruction procedure is sketched in figure 2.

First the maximum entropy solution is calculated. In a binarisation process those vox-
els with the largest material values are identified as belonging to the defect. Sequently, a
new solution of maximum entropy is calculated using the voxel identified as belongig to
the defect as a boundary condition . This procedure is repeated iteratively up to a com-
plete binary reconstruction. During the binarisation process a few natural geometrical
boundary conditions are used, e.g. within a defect no material can be enclosed. If addi-
tional a priori assumptions over the shape of the defects are known, they are brought into
the binarisation process as further boundary conditions. The basic idea of the procedure
is to assign only few voxels to the defect in each iteration, in order to ensure a gradual
adjustment of the solution to the binary constrain.

4 Results

To measure the performance of the proposed method experiments are carried out using
simulated data records. A ball, a right parallelepiped and an object of complex geometry
shown in figure 3 are used as test objects. The reconstructions are calculated from 5



| | noise 0% | noise 5% | noise 10% |

ball 0% 1% 3%
parallelepiped 0% 2% 3%
complex object 1.2% 5% ™%

Table 1: Reconstruction errors (simulated objects)

simulated radiographs distributed within a range of 90°. The position of the projections
is varied to investigate the dependency of the results on the projection direction. The
influence of measurement errors s investigated using Gaussian noise of different strength.
The amount of falsely reconstructed voxel related to the volume of the object is used as
an error measurement for the evaluation of the reconstruction .

In table 1 the results of the reconstruction using simulated radiographs are summa-
rized. The given results are averaged over several attempts. Without noise influence an
exact reconstruction is achieved for the ball and the right parallelepiped. The complex
object is reconstructed with a small error of about 1.2%. Very small deviations of the re-
constructed shape from the true shape occur depending on the selection of the projection
directions.
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Figure 3: Reconstruction of a complex object

With increasing noise the number of falsely reconstructed voxel increases, the object
shape however is shown in all cases only insignificantly worse than in the case of ideal
data. In figure 3 the reconstruction result for the complex object using projections with
10% noise overlayed is shown layer by layer. Voxel, which are reconstructed incorrectly as
belonging to the defect, are marked white in the presentation of the reconstruction error.
Voxel, which are determined incorrectly as not belonging to the defect, are marked black.

In the following, investigations are carried out using defects of well-known geometry
as well as real casting defects. The radiographs were taken up with a simple radioscopic
system consisting of a microfocus X-ray tube, an image converter and a CDD camera. The
calibration of the geometrical characteristics of the radioscopic system was achieved by
using a special calibration procedure. Details of the calibration procedure are described
in [5].
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Figure 4: Reconstruction of a drilling hole

Defects of well-known geometry are simulated in a test sample by drilling holes of
different size and depth. As an example, in figure 4 the reconstruction of a cylindrical
drilling hole is presented. Using 5 radiographs in a 90° range, about 3% of the voxel are
reconstructed wrong. The deviations can all be found at the surface of the hole. On the
average the deviations of the reconstructed shape from the actual shape is less than one
voxel. The maximum shape deviation amounts to two Voxel. These results have been
confirmed using drilling holes of different shape and size.

The reconstruction of a real casting defect using 5 radiographs (90° range) is presented
in figure 5. The maximum entropy solution and the binary reconstruction are shown.

These test results indicate that it is possible to reconstruct casting defects from only
few radiographs using the material parameters of the casting samples as a priori know-
ledge.
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Figure 5: Reconstruction of a casting defect

5 Conclusions

An approach for the tomographic reconstruction of casting defects from few radiographs
has been presented. The two-stage procedure is based on a systematic use of the a
priori knowledge of the material parameters of the casting sample in connection with
the limitation of the reconstruction to regions of interest around defect areas. For the
regularization of the tomographic reconstruction problem the maximum entropy principle
is used in connection with an iterative procedure for the binarisation of the reconstruction.
Investigations using simulated data as well as defects of well-known geometry show
that the presented procedure enables a reconstruction from very few radiographs. A high
reconstruction accuracy is achieved for simple defect geometries. The accuracy of the
reconstruction of complex defects is examined at present in further investigations.
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