MPIOS file format description

Gerard Pons-Moll and Andreas Baak
September 30, 2010

Abstract

This document contains the description of the file formats and conventions
used in the MPIO8 database. It contains the file format description of 3 differ-
ent types of file: MeshModel.dat, SensorOris.dat, Proj??.dat and
MPI_<actor>_<seqg>_<take>_<frameRate>_<view>.mat, which corre-
spond to 3D mesh model of the subject, calibrated/uncalibrated and synchronized
sensor orientation data, camera projection matrices and segmented silhouette im-
ages. This description corresponds to the data used in [1, 2] which we make public
for research purposes.

1 Filetypes and formats

In this section a description of the different files needed to use the MPIOS database
is given. The descriptions explained here correspond to the data used in the projects
Multisensor Fusion for 3D Full-Body Human Motion Capture [1] and Analyzing and
Evaluating Markerless Motion Tracking Using Inertial Sensors [2]. Please for a practi-
cal guide on how to read and use this files, please use the MPT08_demo . m file included
in the database.

1.1 Files of type MeshModel.dat

This files are located in the InputFiles directory. They contain a mesh model
together with an inserted skeletton. The structure of the file is the following:

Header The header should include 4 numbers:

e Number of Vertices: The total number of vertex points of the 3D mesh
model

e Number of Faces: The total number of faces of the 3D mesh model. A face
is each of the triangular patches conecting three vertices of the mesh.

e Number of Joints: Total number of joints of the 3D mesh model skeletton.
The number of joints determine the allowed articulated motions of the body. A
joint is a point in the mesh conecting to rigid segments, i.e. the elbow. The nature
of the joint is determined by its location and direction. Note that a 3 Dof joint
like the shoulder is generally modelled by the concatenation of 3 revolute joints.
Therefore, this joints count as 3 in the joint count. IMPORTANT: The root joint
is not counted.

e Number of Skinning Weights: Since the human motion is not com-
pletely rigid, skinning weights are incorporated. This weights should add up
to one. Thereby, each vertex is influenced by as many joints as skinning weights
and the influence of each joint is determined by the corresponding weight. This
rather simple approach is commonly known as Linear Blend Skinning, an excel-
lent description can be found in [3].

Data The 3D mesh model is represented by three diferent kinds of data. First, the
vertex points, second, the faces of the mesh and finally the joints forming the skeletton
of the mesh. The data is arranged in the file with the following convention:

e VERTICES:

X Y Zz J.ID1 wl J.ID2 w2

X, Y, Z: 3D coordinates of the mesh vertex.
— J.ID1: Joint ID influencing the vertex
wl: Weight of joint J.ID1

— J.ID2: Joint ID influencing the vertex
w2: Weight of joint J.ID2

e FACES:

V.ID1 V.ID2 V.ID3

— V.ID1: Vertex ID of the first vertex of the face.
— V.ID2: Vertex ID of the second vertex of the face.
— V. ID3 :Vertex ID of the third vertex of the face.

e JOINTS:

J-ID X Y Z w1 wg w3 PJ.ID Ball

— J-ID: Joint ID
— X,Y,Z :3D coordinates of the joint location, ¢

- wj , wy , ws: Unit rotation axes vector, the vertices influenced by this joint
can rotate around this axes.

— PJ.ID: The parent joint ID. For example, the knee joint is the parent of
the ankle joint.

— Ball: Indicates whether this is a ball joint (3 DoF joint, usually shoulders
and hips). 0 — revolute joint, 1 — balljoint like in [4], by default it is set
to 0.

<MeshModel .dat>

N. Vertices N. Faces N. Joints N. Skinning Weights HEADER

X Y Z J.ID1 wl J.ID2 w2

VERTICES
X Y Z J.ID1 wl J.ID2 w2
V.ID1 V.ID2 V.ID3

FACES
V.ID1 V.ID2 V.ID3
J-ID X Y Z w1 w2 w3 PJ.ID Ball

JOINTS

J-ID X Y Z w1 w2 w3 PJ.ID Ball

Figure 1: MeshModel.dat file description

1.2 Files of type SensorOrientation.dat

This files are located in the MPT08 PriorFiles. This files contain the orientation
data from the Inertial Measurement Units (IMU). In the recordings five IMU where
used attached at the limb extremities and the back neck, see [1]. The orientation of
each of the sensor is given as a quaternion (4 numbers) for each frame.

Header

Numframes: 406 NumSensors 5
lankle 556 lankle 1032 neck 134 lwrist 432 rlwrist 916

The first line of the file contains the number of frames of the sequence and the number
of sensors used. In the example above the number of frames is 406 and the number
of sensors is 5. The second line of the file consists of N columns, as many columns
as sensors, 5 in our case. Each column consists of the body part where the sensor was
attached and the joint ID of the mesh by which the sensor is influenced. Thereby the
second line of the file alternates BodyPart J.ID, see the file illustration in Figure
2. The first corresponds to the left shin (1knee_lankle), the second to the right
shin (rknee_rankle), the third to the upper back (chest_neck), the fourth to the left hand
(Iwrist_lhand), and the last to the right hand (rwrist_rhand).

Data Each new line of data corresponds to the quaternions of each of the sensors (5
in our case) starting from the first frame of the sequence. Each new line indicates a
new frame in the sequence. A line contains 20 numbers, defining 5 unit quaternions,
one for each sensor. The vector entries of each quaternion are stored in the order
q = (w,z,y, z), so first the real part of the quaternion, and then the three imaginary
parts are depicted. The orientation data for each sequence is given in three different

SensorOrientaiton.dat

Numframes: 406 NumSensors 5

lknee_lankle 15 rknee_lankle 20 chest_neck 22 lwrist_lhand 6 rlwrist_lhand 11

1 1 1 1 ks < < 5 E 5 5
T 9 4y O S A A4 o @ & ¢ frame 1
1 1 1 1 3 3 3 3 5 5 5 5
R R A @ @ 4 ¢ @ @& 4 4 frame N

Figure 2: SensorOrientation.dat file description

representations for each sequence. The files with the prefix SensorOrisTa. contain
the orientation data that is temporally aligned to the 40 fps image sequences. Addi-
tionally, the orientation data has been rotated so that in the reference coordinate system
the Y-axis points upwards (as opposed to the Xsens convention that the Z-axis points
upwards).

The files with the prefix SensorOrisTaSaOnlyGlobal._ contain the orienta-
tion data that is now expressed in the global tracking coordinate system. That is, the
coordinate system offset (obtained from calibration) ¢ has been applied to express the
orientations in the global inertial coordinate system . These files have been used in the
project Multisensor-Fusion for 3D Full-Body Human Motion Capture.

The files with the prefix SensorOrisTaSa- contain orientations that are cali-
brated so that a) the offset from the inertial coordinate system to the tracking coordi-
nate system is aligned and b) the offset from the sensor coordinate system to the bone
coordinate system of our skeleton is aligned. These files have been us in the project
Analyzing and Evaluating Markerless Motion Tracking Using Inertial Sensors [2]. The
orientation data is - for ease of parsing and debugging - stored in text files.

1.3 Files of type proj??.dat

This files are located in the InputFiles directory. The camera projection matrices
are obtained with the camera calibration toolbox in Matlab. The proj??.dat files
contain the camera projection matrices for each camera. In the proj??.dat the in-
trinsic and extrinsic camera parameters are included in the form of 3 matrices P, K, M
using the same notation as in [5].

Header : The header is a letter P K,M specifing the matrix.

Data

1. Intrinsic parameters K :

faa 0 co
K=10 fea ca (D
0 0 1

with Focal length f. = [fci, fea]' and Principal point cc = [cey cea]”. Note:
The focal length is stored in the 2x1 vector fc and the principal point are stored
in the 2x1 vector cc in pixel units.

Important Convention: Pixel coordinates are defined such that [0;0] is the center
of the upper left pixel of the image. As a result, [nx-1;0] is center of the up-
per right corner pixel, [O;ny-1] is the center of the lower left corner pixel and
[nx-1;ny-1] is the center of the lower right corner pixel where nx and ny are the
width and height of the image (for the images of the first example, nx=640 and
ny=480).

One matlab function provided in the toolbox computes that direct pixel projec-
tion map. This function is project_points2.m. This function takes in the 3D
coordinates of a set of points in space (in world reference frame or camera ref-
erence frame) and the intrinsic camera parameters (fc,cc,kc,alpha_c), and returns
the pixel projections of the points on the image plane. See the information given
in the function.

2. Extrinsic parameters K :

[R3x3 t3xa1
M= (e) @

M is the transformation from the world coordinate system (the calibration cube)
and the camera frame. If M = [A|D] then the camera center in world coordinates
isCW = —A-1p;

3. Intrinsic + Extrinsics camera projection P :
P = [K|0]M 3)

The matrix P maps a point in workd coordinates X"V to pixel coordinates .

1.4 Silhouette files

This files are located in the Silhouettes directory. The silhouettes are stored in a
matlab file. This file MPI_<actor>_<seqg>_<take>_<frameRate>_<view>.mat
contains all the silhouette images corresponding to a full take for one camera view.
Therefore, in the MPIO8 database there is one of this files per view and take.

Data : The matlab file consists of 5 fields:
e frameHeight: y-size of the image
e frameWidth: x-size of the image
e nframes: Number of frames of the take
e sampling Rate: sequence frame rate

e frameRLE: cell array of dimension 1 x n frames. Each cell contains the im-
age run-length encoded. The images can be decoded with the matlab function
runLengthDecode . m included in the matlab demo file MPT08_demo . m.

Besides the matlab files the silhouettes are also included as text files
MPI <actor>_<seqg>_<take>_<frameRate> _<view>.dat inthe same format
for easy parsing from c/c++ and for compatiblity with systems without matlab license.

References

[1] G.Pons-Moll, A. Baak, T. Helten, M. Miiller, H.-P. Seidel, and B. Rosenhahn, ‘“Multisensor-
fusion for 3d full-body human motion capture,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), jun 2010.

[2] A. Baak, T. Helten, M. Miiller, G. Pons-Moll, B. Rosenhahn, and H.-P. Seidel, “Analyz-
ing and evaluating markerless motion tracking using inertial sensors,” in 3rd Workshop on
Human Motion. In Conjunction with ECCV 2010., Sept. 2010.

[3] J. Lewis, M. Cordner, and N. Fong, “Pose space deformation: a unified approach to shape
interpolation and skeleton-driven deformation,” in Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, pp. 165-172, ACM Press/Addison-
Wesley Publishing Co. New York, NY, USA, 2000.

[4] G. Pons-Moll and B. Rosenhahn, “Ball joints for marker-less human motion capture,” IEEE
Workshop on Applications of Computer Vision (WACV), dec 2009.

[5] D. Forsyth and J. Ponce, Computer vision: a modern approach. Prentice Hall Professional
Technical Reference, 2002.

